
Comparison of Looping Structures in Java

We’ve been using the “enhanced for-loop” (sometimes called the “for-each” loop) to cycle
through each item in a LinkedList. The for-each loop is used to access each successive value
in a collection of values, and in general can be used to iterate over anything that implements
the Iterable<E> interface. Here’s a for-each loop that calculates the sum of the integers in
a LinkedList of integers:

LinkedList<Integer> alon = new LinkedList<Integer>();

// some code to fill in alon with Integers

Integer result = 0;

for (Integer element: alon){

result = result + element;

}

Java provides two other mechanisms for looping, the for-loop and the while-loop.

1



For loop

Here is the basic structure of a for-loop:

for (initializer; boolean expression; increment-statement){

statements in for-block

}

where:

• initializer: initialize variables that will be used in the for-block

• boolean expression: determines if looping should continue

• increment-statement: a statement executed at the end of each execution of the for-
block

• for-block: statements to execute every time the boolean expression is true

The for-loop executes by following these steps:

1. execute the initializer

2. evaluate the boolean expression; if it evaluates to

(a) true, then

i. execute the for-block

ii. execute the increment-statement

iii. go back to step 2

(b) false, then jump to the first statement after the for-block

Rewriting our code for summing the numbers in an LinkedList using a for-loop gives us this:

Integer result = 0;

for (int index = 0; index < alon.size(); index = index + 1){

result = result + alon.get(index);

}

Notice we’re using the LinkedList method get() that allows access to a list element by its
position in the list.

2



While loops

The other looping structure in Java is the while-loop:

while (boolean expression){

statements in while-block

}

The while-loop works as follows:

1. Evaluate the boolean expression

2. If the expression is true, execute the statments in the while-block and go back to step
1

3. If the expression is false, jump to the first statement after the while block

So, our loop to sum the items in an LinkedList becomes:

Integer result = 0;

int index = 0;

while(index < alon.size()){

result = result + alon.get(index);

index = index + 1;

}

The while loop is essentially the same as the for-loop, except that the initializer statement
and the increment-statement are not built in to the syntax of the while-loop, as they are in
the for-loop. Instead, the initializer (in the example above, the statement int index = 0;)
and the increment-statement (index = index + 1;) are coded as separate statements.

When should I use a particular looping structure?

The enhanced for-loop is the loop of choice in most situations, because it is easier to read
and more self-documenting than the other two loops. But there are some situations when
the enhanced-for cannot be used:

• The enhanced-for loop is meant to access elements only, not to change them. Do not
use the enhanced-for to increment each element in a LinkedList, for example.

• The enhanced-for loop is meant for single element access only. If you want to compare
successive elements, for example, use one of the other looping structures.

• The enhanced-for loop iterates over the structure in the “forward” direction, by single
steps. If you want to process a structure from end to beginning, or process just every
other element, you should not use the enhanced-for.

3


