CS 502

Spring 99
WPI MetroWest/Southboro Campus

Process Management

Memory Management

Persistent Storage Management
File Management

I/O System Management
Distributed Systems and Networks

Interface to the User
Shells
Graphical User Interface

A process is a program in execution. It is equivalent to a
Virtual Computer. A process needs certain resources,
including CPU time, memory, files, and I/O devices, to
accomplish its task.

The operating system is responsible for the following
activities in connection with process management:
Process creation and deletion
Process suspension and resumption
Provision of mechanisms for
Process synchronization
Process communication

Memory is a large array of words or bytes, each with its
own address. lItis a repository of quickly accessible data
shared by the CPU and I/O devices.

Main memory is a volatile storage device. It loses is
contents in the case of a system failure.

The operating system is responsible for the following
activities in connection with memory management:
Keep track of which parts of memory are currently being used and
by whom.

Decide which process to load when memory space becomes
available.

Allocate and deallocate memory space as needed.

Since main memory is volatile and too small to
accommodate all data and programs permanently, the
computer system must provide persistent storage to back
up main memory.
Disks are the principle on-line storage medium.
The operating system is responsible for the following
activities in conjunction with disk management:

Free-space management

Storage allocation

Disk scheduling

A file is a collection of related information defined by its
creator. Commonly, files represent programs (both source
and object forms) and data.

The operating system is responsible for the following
activities in connection with file management:
File creation and deletion
Directory creation and deletion
Support of primitives for manipulating files and directories
Mapping files onto persistent storage
File backup on off-line media

The 1/0O system consists of:
A buffer caching system
A general device-driver interface
Drivers for specific hardware devices

A distributed system is a collection of processors that do
not share memory or a clock. Each processor has its own
local memory.
The processors in the system are connected through a
communication network.
A distributed system provides user access to various
system resources.
Access to a shared resource allows”

Computation speed-up

Potential for increased data availability

Potential for enhanced reliability

A command shell or a window-based GUI provide the
ability to executed application programs and convenient
access to invoking systems programs. These allow for:

Process creation and management.

I/0 handling, monitoring, and management

Secondary storage management

Main memory monitoring and management

File-system access

Protection

Networking

Accounting

Programming Language support

Concurrency

Resource Management
Protection

Exceptions

Asynchronous Operation and 1/0
Scheduling

Synchronization

NN A O O
Hardware Support

OS Functionality

Protection

Exceptions and

Asynchronous Operation

I/0 Control

Scheduling and Time-

Multiplexing

Synchronization

Kernel/User Mode

Protected Instructions
Base and Limit Registers

Interrupt and Trap Vectors

Memory-Mapping or I/O

Instructions
DMA

Timer

Atomic Instructions

10

CPU

Memory

- @

/—‘ﬁ

(: (: i Network Medium
T T
Disk Printer Network
Controller Controller Controller
System Bus l
Memory
Controller

11

I/O Devices and the CPU can execute concurrently.
Each device controller is in charge of a particular device
type.

Each device controller has a local buffer.

CPU moves data from/to main memory to/from the local
buffers.

I/0O is from the device to the local buffer of the controller.

Device controller informs CPU that it has finished an
operation or needs attention by causing an interrupt.

12

Processor Registers

User-visible registers
Data Registers
Address Registers

Control and Status registers
IA: Instruction Address
IR: Instruction Register
PSW: Program Status Word

Instruction Execution

Fetch Cycle Execute Cycle

Fetch Next Execute
Instruction "| Instruction

Start >

13

Instruction Classes
Non-privileged
Processor-memory
Data Processing

Arithmetic
Shift Operations

Flow control
Branch
Subroutine linkage
Privileged
Processor-1/0
Control

14

Kernel/User Mode

Protected Instructions

Address Translation

Exception and Trap Vectors
Interrupts

Communication with 1/0O Controllers
Timer

Atomic Instructions

15

To protect the system from aberrant users, some

instructions are restricted to use only by the operating

system. Users (l.e. imser mode) may not:
Address I/O directly

Use instructions that manipulate the state of memory (page table

pointers, TLB load, etc.)
Set the mode bits that determine user or kernel mode
Halt the machine

In kernel mode, the OS can do all these things.

16

Mode bit added to computer hardware to indicate the

current mode: kernel (0) or user (1)

When an interruption occurs (exception or interrupt),

hardware switches to kernel mode.

interruption

Kernel Mode

set user mode

Further discussion of crossing protection boundaries is

deferred until after the discussion on interruptions.

17

> Memory

Trap to operating system with an
address exception

When executing in kernel mode, the operating system has

unrestricted access to both the OS memory and the users’ memory
The load instructions for the base and limit registers must be

privileged instructions

18
(T T 0
As one goes down the memory
hierarchy, the following occur:
Decreasing cost per bit Registers
Increasing capacity
Increasing access time
. Cache
Decreasing frequency of
access of the memory by the
processor Main Memory
Disk Cache
Magnetic Disk
Removable Media
19

10

Interruption — an event in a computer system disrupting the
normal instruction execution flow.

Interruption Classes
Program, calledxception or Trap
Synchronous with the instruction stream

Arithmetic overflow, divide by zero, illegal instruction, illegal
memory reference, etc.

Timer, called nterrupt

Asynchronous

Interval timer
I/O, calledInterrupt

Asynchronous

1/0 normal completion or error condition (abnormal completion)
Hardware Failure

20
(I T T T e
™ T ™ N st]
FE=ras FEsras erirt] FE=rEs Lt et
| i, ' o [i
| | A @ | @l ! v @ | ol | w0 |a
Lh H L . Lk ! e 4 L H AT 1
i | " L 1 L i~ b 1
WEITL ! H — WIRETL] H e WL : -' | Km—
-1 : -1 : ':;] =T N : L
1 I - et I -
] i i I H !
il i S] I . | :
has] N |:,": har : -I
H 1t ’ [ers
i @ ~ . Faaka 1 & e
i 1p il |
— o — e 1 = b= 1 -
WEITE WRATE L] WRITE Lo AR o i L+
1 — 1 : i L
H 1 K i i i
et 1 L]
| -y 1 1 .'_
H e
[&F} H E ; - b
| s i I
1 L& 1 154
L . 1_r
N Ll Al |
[T—— s Imacrrapus ahon BF ot 1 T bong W B wa
21

11

Instruction Control Flow and Instruction
Cycle with Interrupts
QT T e

User 1 ——> Interrupt
- -

Program 5
|

i+1

M
Freich |y Ervain Lyl Inir v & ke
1
= e

[war I
\,
22

Smple Interrupt Processing

(1 T T T T e
Solfffwary

23

12

= |nterrupt

s M. = : o I
PFregram
v Example
L1 1000 (I (T
Vag [e |
i et =~y
‘ Il—.{l | : E | :h I Il—i{ I
Propras Mk Pl
Lt Ardern
¥ —_
N L. Tl
Lur's I -r.lnrrrln'lfﬂh'r el
Promirad Kol i S
aky Beonr v pwcrs g 24
Multiple Interrupts

+ Two approaches
— Disable interrupts while an interrupt is being processed.
— Sequential interrupt processing

Ireemap
L sy Promres Haralhr L

25

13

Define priorities for interrupts and allow an interrupt of higher
priority to cause a lower priority interrupt handler to be
interrupted.

Lsr Fregram Hamdier T

- | =1
- | =

===t] Ireerrap
Hralier |

m
_— .-

26

Assume a printer, a disk, and a comm line, with priorities of 2, 4,
and 5 respectively. (Bigger number is more important).

27

14

Two techniques for interface:

I/O Instructions

“Memory-mapped 1/O”
Three techniques for controlling the operation of the I/O
from the CPU:

Programmed I/O
1/0 instruction categories
Control
Test
Read, write
Interrupt-driven 1/O

Direct memory access (DMA)

28
0 T 0 0 e
[[i [——— Pl DA
| R e § T L P oo §e T s g Fin ks vl [N i
e —— JE—— C P Y L
—— —
T r
B copms Kol vppams base Fond waps Vs
o 16 e A o Wi ol IiiA
Tk b (SRR L] rek e IHAE
—
[
_— -
o b o EFn
s rdinien B R ———
it i
—
Fasad wecrd Foudad s
e iE) TIESL s B i [L]
o o I b bt
SN S—
Wrer ww i
TaieT i wp [T OO
E===y====x
N
L=
Somm
W imrrags <o D1 29

15

Interval Timer — interrupts computer after specified period
to ensure operating system maintains control.

Timer is decremented on every clock tick

When timer reaches the value 0, an interrupt occurs

Timer is commonly used to implement time sharing
Timer is also used to compute the current time.
Load timer must be a privileged instruction.

30

Consider a hypothetical system consisting of:
A CPU with an interval timer
Memory
A Disk Controller

31

16

rO: always loads 0, store is a no-op
rl: return value from procedures
r8: first parameter to a function call (or system call)

r9 to r1l: second, third, and fourth parameters to a function
call (or system call)

r29: the frame pointer
r30: the stack pointer
r31: the return address from a procedure call

32

ia: the instruction address register contains the address of the next
instruction

psw: the program status word. Bit O is processor mode, Bit 1 is
interrupt enable

base: the memory base register is added to all addresses when the
system is in user mode

bound: the memory bound register is the address limit (user mode).

iia: the interrupt instruction address register stores the value of the
ia register before an exception.

ipsw: the interrupt program status word
ip: the interrupt parameter

iva: the interrupt vector address register
timer: the interval timer register

33

load
store
loadAll
storeAll
move
syscall
rti

34

35

18

36

19

