
1

File and File–System Management

CS 502

Spring 99

WPI MetroWest/Southboro Campus

3/23/99 1

File and File–System Management Outline

• File–System Interface
– File Concept
– Access Methods
– Directory Structure
– Protection
– Consistency Semantics

• File–System Implementation
– File-System Structure
– Allocation Methods
– Free-Space Management
– Directory Implementation
– Efficiency and Performance
– Recovery

2

3/23/99 2

File Concept

• Contiguous logical address space

• Types:
– Data

• numeric

• character

• binary

– Program
• source

• object (load image)

– Documents

3/23/99 3

File Structure

• None - sequence of words, bytes

• Simple record structure
– Lines
– Fixed length
– Variable length

• Complex Structures
– Formatted document
– Relocatable load file

• Can simulate last two with first method by inserting
appropriate control characters.

• Who decides:
– Operating system

– Program

3

3/23/99 4

File Attributes

• Name – only information kept in human-readable form.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing,
executing.

• Time, date, and user identification – data for protection,
security, and usage monitoring.

• Information about files are kept in the directory structure,
which is maintained on the disk.

3/23/99 5

File Operations

• create

• write

• read

• reposition within file – file seek

• delete

• truncate

• open(Fi) – search the directory structure on disk for entry
Fi, and move the content of entry to memory.

• close(Fi) – move the content of entry Fi in memory to
directory structure on disk.

4

3/23/99 6

File Types – name.extension

File Type Usual Extension Function

Executable
exe, com, bin, or
none

Ready-to-run machine-language
program

Object obj, o
Compiled machine language, not
linked.

Source Code c, p, pas f77, asm, a Source code in various languages.

Batch bat, sh
Collections of commands to the
command interpreter.

Text txt, doc Textual data, documents.
Word Processor doc, wp, tex, rrf, … Various work-processor formats
Library lib, a Libraries of routines
Print or View ps, div, gif, … ASCII or binary file

Archive arc, zip, tar
Related files grouped into one file,
sometimes compressed.

3/23/99 7

Access Methods

• Sequential Access
– read next
– write next
– reset
– no read after last write (rewrite)

• Direct Access
– read n
– write n
– position to n

• read next
 write next

– rewrite n

 n = relative block number

5

3/23/99 8

Directory Structure

• A collection of nodes containing information about all
files.

• Both the directory structure and the files reside on disk.

• Backups of these two structures are kept on tapes.

Directory

F1
F2 F3 FnFiles

3/23/99 9

Information in a Device Directory

• Name

• Type

• Address

• Current length

• Maximum length

• Date last accessed (for archival)

• Date last updated (for dump)

• Owner ID (who pays)

• Protection information (discuss later)

6

3/23/99 10

Operations Performed on a Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

3/23/99 11

Organize the Directory (Logically) to Obtain

• Efficiency – locating a file quickly.

• Naming – convenient to users.
– Two users can have same name for different files.

– The same file can have several different names.

• Grouping – logical grouping of files by properties, (e.g.,
all Pascal programs, all games, ...)

7

3/23/99 12

Single–Level Directory

• A single directory for all users.

• Naming problem

• Grouping problem

cat bo a test data mail cont hex recordsDirectory

Files

3/23/99 13

Two–Level Directory

• Separate directory for each user.

• Path name – absolute and relative
• Can have the same file name for different user
• Efficient searching
• No grouping capability

User 1 User 2 User 3 User 4
Master

File Directory

cat bo a test a data a test x data a
User

File Directory

8

3/23/99 14

Tree–Structured Directories

spell bin programsroot

stat mail dist find count hex reorder

all

p e mail

test a data a hex countfind list reorder

last firstlist obj spell

3/23/99 15

Tree–Structured Directories (Cont.)

• Efficient searching
• Grouping capability
• New concept of the current directory (working directory)

– cd /spell/mail/prog
– type list

• Absolute or relative path names
• Implicit relative operations

– Create a file
– Delete a file
– Create a subdirectory

• Deletion semantics
– Entire subtree or ensure empty subtree

9

3/23/99 16

Acyclic–Graph Directories

• Ability to share subdirectories and files

dict spellroot

list all w count words listcount

list rade w7

3/23/99 17

Acyclic–Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list ⇒ dangling pointer.

• Solutions:
– Backpointers, so we can delete all pointers.

Variable size records a problem.

– Backpointers using a daisy chain organization.

– Entry-hold-count solution.

10

3/23/99 18

General Graph Directory

tcb gladeroot

text mail count papers mail unhexpapers

tcb count

rcbc

unhex hex

hyp

3/23/99 19

General Graph Directory (Cont.)

• How do we guarantee no cycles?
– Allow only links to file not subdirectories.

– Garbage collection.

– Every time a new link is added use a cycle detection algorithm to
determine whether it is OK.

11

3/23/99 20

Protection

• File owner/creator should be able to control:
– what can be done

– by whom

• Types of access
– Read

– Write

– Execute

– Append

– Delete

– List

3/23/99 21

Access Lists and Groups

• Mode of access: read, write, execute
– RWX, R = 4; W=2; X=1

• Three classes of users
– owner access 7 ⇒ 1 1 1
– groups access 6 ⇒ 1 1 0
– public access 1 ⇒ 0 0 1

• Ask manager to create a group (unique name), say G, and
add some users to the group.

• For a particular file (say game) or subdirectory, define an
appropriate access.
– chmod 761 game

• Attach a group to a file
– chgrp G game

12

3/23/99 22

Consistency Semantics

• Specify “what happens” when multiple users access a
shared file concurrently:

• File Session – set of operations bracketed by open and
close.

• Unix Semantics
– writes to a file are visible to concurrent sessions

– common file pointer sharing

• Session Semantics
– writes to a file are not visible to concurrent sessions

– Upon a close, updates are visible to successor sessions

• Immutable Shared File semantics

3/23/99 23

File–System Implementation

• File-System Structure

• Allocation Methods

• Free-Space Management

• Directory Implementation

• Efficiency and Performance

• Recovery

13

3/23/99 24

File–System Structure

• File structure
– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks).

• File system organized into layers.

• File control block – storage structure consisting of
information about a file.

• File Allocation Table – collection of file control block
information

3/23/99 25

File–System Software Architecture

Pile Sequential
Indexed

Sequential
Indexed Hashed

Logical I/O

Basic I/O Supervisor

Basic File System

Disk Device Driver Tape Device Driver

User Program

14

3/23/99 26

Device Drivers

• Lowest level

• Communicates directly with peripheral devices

• Responsible for starting I/O operations on a device

• Processes the completion of an I/O request

3/23/99 27

Basic File System

• Physical I/O

• Deals with exchanging blocks of data

• Concerned with the placement of blocks

• Concerned with buffering blocks in main memory

15

3/23/99 28

Basic I/O Supervisor

• Responsible for file I/O initiation and termination

• Control structures are maintained

• Concerned with scheduling access to optimize
performance

• Part of the operating system

3/23/99 29

Logical I/O

• Allows users and applications to access records

• Maintains basic data about file

16

3/23/99 30

Access Method

• Reflect different file structures

• Different ways to store and process data

3/23/99 31

Contiguous Allocation

• Each file occupies a set of contiguous blocks on the disk.

• Simple – only starting location (block #) and length
(number of blocks) are required.

• Random access.

• Wasteful of space (dynamic storage-allocation problem).

• Files cannot grow.

• Mapping from logical to physical.

• LA/512: Quotient Q, Remainder R
– Block to be accessed = Q + starting address

– Displacement into block = R

17

Contiguous File Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Start Block Length

FileA
FileB
FileC
FileD
FileE

2 3
9 5

18 8
30 2
26 3

FileA

FileB

FileC

FileE

FileD

3/23/99 33

Linked Allocation

• Allocation on basis of individual block

• Each block contains a pointer to the next block in the chain

• Only single entry in the file allocation table
– starting block and length of file

• No fragmentation

• Any free block can be added to the chain

• No accommodation of the principle of locality – no
random access.

• LA/511 Quotient Q; Remainer R
– Block to be accessed is the Qth block in the linked chain of blocks

representing the file.
– Displacement into block = R+1

18

Linked File Allocation

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Start Block Length

...

......
FileB 5

...
1

FileB

3/23/99 35

Indexed Allocation

• Brings all pointers together into an index block.

• Logical view:

19

Indexed Allocation with Block Portions

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Index Block

...

...

...

...
FileB 24

FileB

1
8
3
14
28

-1

3/23/99 37

Indexed Allocation (Cont.)

• Need index table

• Random access

• Dynamic access without external fragmentation, but have
overhead of index block.

• Mapping from logical to physical in a file of maximum
size of 256K words and block size of 512 words. We need
only 1 block for index table.

• LA/512
– Q = displacement into index table

– R = displacement into block

20

Indexed Allocation - Var Length Portions

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

File Allocation Table

File Name Index Block

...

...

...

...
FileC 24

Start Block Length

1
28
14

3
4
1

FileC

3/23/99 39

Indexed Allocation – Mapping (Cont.)

• Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

• Linked scheme -- Link blocks of index tables (no limit on
size).

• LA/(512 x 511)
– Q 1 block of index table

– R 1 is used as follows:

• R 1 / 512
– Q 2 = displacement into block of index table

– R 2 = displacement into block of file

21

3/23/99 40

Indexed Allocation – Two Level Index

Directory

Outer–index

Index Table

File

3/23/99 41

Unix File Allocation (4K bytes per block)

Mode
Owners (2)

Timestamps (3)
Size Block

Count

Direct
Blocks

Single Indirect
Double Indirect
Triple Indirect

data

data

data

data

data

data

data

data

data

data

22

3/23/99 42

Free–Space Management

• Bit vector (n blocks)

– bit[i] =
• 0 ⇒ block[i] free

• 1 ⇒ block[i] occupied

• Block number calculation
– (number of bits per word) *

– (number of 0-value words) +

– offset of first 1 bit

0 1 2 3 4 5 6 7 n-1

...

3/23/99 43

Free–Space Management (Cont.)

• Bit map requires extra space. Example:
– block size = 212 bytes

– disk size = 230 bytes (1 gigabyte)

– n = 230 / 212 = 218 bits (or 32K bytes)

• Easy to get contiguous files

• Linked list (free list)
– Cannot get contiguous space easily

– No waste of space

• Grouping

• Counting

23

3/23/99 44

Free–Space Management (Cont.)

• Need to protect:
– Pointer to free list

– Bit map
• Must be kept on disk.

• Copy in memory and disk may differ.

• Cannot allow for block[i] to have a situation where bit[i] = 1 in
memory and bit[i] = 0 on disk.

– Solution:
• Set bit[i] = 1 in disk.

• Allocate block[i].

• Set bit[i] = 1 in memory.

3/23/99 45

Directory Implementation

• Linear list of file names with pointers to the data blocks.
– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.
– decreases directory search time

– collisions – situations where two file names hash to the same
location

– fixed size

24

3/23/99 46

Efficiency and Performance

• Efficiency dependent on:
– disk allocation and directory algorithms

– types of data kept in file's directory entry

• Performance
– disk cache – separate section of main memory for frequently used

blocks

– free-behind and read-ahead -- techniques to optimize sequential
access

– improve PC performance by dedicating section of memory as
virtual disk, or RAM disk

3/23/99 47

Various Disk–Caching Locations

CPU

ram disk

open-file table

block buffer

Main memory

track
buffer

Controller disk

25

3/23/99 48

Recovery

• Consistency checker – compares data in directory structure
with data blocks on disk, and tries to fix inconsistencies.

• Use system programs to back up data from disk to another
storage device (floppy disk, magnetic tape).

• Recover lost file or disk by restoring data from backup.

