
1

Memory Management

CS 502

Spring 99

WPI MetroWest/Southboro Campus

1

Memory Management Outline

• Background

• Logical versus Physical Address Space

• Swapping

• Contiguous Allocation
– Static Partitions

– Dynamic Partitions

• Paging

• Segmentation

• Segmentation with Paging

2

2

Background

• Program must be brought into memory and placed within a
process for it to be executed.

• Process Input Queue — collection of processes on the disk
that are waiting to be brought into memory for execution.

• User programs go through several steps before being
executed.

3

Binding of Instructions and Data to Memory

• Compile Time — If final physical memory location is
known a priori, absolute code can be generated. This
implies that code must be recompiled if starting location
changes.

• Load Time — Compiler or assembler must generate
relocatable code if memory location is not known at
compile time. Loader transforms relocatable code based
on starting load address.

• Execution Time — Binding is delayed until run time.
This enables the process to be moved during its execution
from one portion of memory to another. This requires
hardware support.

3

4

Dynamic Loading

• Routine is not loaded into memory until it is called.

• Better memory-space utilization; unused routine is never
loaded.

• Useful when large amounts of code are needed to handle
infrequently occurring cases.

• No special support from the operating system is required;
implemented through program design.

5

Dynamic Linking

• Linking of module is deferred until execution time.

• Small piece of code, called a stub, is used to locate the
appropriate memory-resident library routine.

• Stub replaces itself with the address of the routine, and
executes the routine.

• Operating System needed to check if routine is in
processes’ memory address

4

6

Overlays

• Keep in memory only those instructions and data that are
needed at any given time.

• Needed when process is larger than amount of memory
allocated to it.

• Implemented by user, no special support needed from
operating system; programming design of overlay structure
is complex.

7

Logical versus Physical Address Space

• The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.
– Logical address — generated by the CPU; also referred to as a

virtual address.

– Physical address — address seen by the memory unit.

• Logical and physical addresses are the same in compile-
time and load-time address binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

5

8

Memory Management Unit (MMU)

• Hardware device that maps virtual to physical addresses.

• In MMU scheme, the value in the relocation register is
added to every address generated by a user process at the
time it is sent to memory.

• The user program deals with logical addresses; it never
sees the real physical addresses.

9

Swapping

• A process can be swapped temporarily out of memory to a backing

store, and then brought back into memory for continued execution.

• Backing store — fast disk large enough to accommodate copies of all

memory images for all users; must provide direct access to these

memory images.

• Roll out, roll in — swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority

process can be loaded and executed.

• Major part of swap time is transfer time; total transfer time is directly

proportional to the amount of memory swapped.

• Modified versions of swapping are found on many systems, i.e., UNIX

and Microsoft Windows.

6

10

Schematic View of Swapping

Operating
System

User
Space

Process
P1

Process
P2

Swap
Out

Swap
In

11

Contiguous Allocation

• Main memory usually into two partitions:
– Resident operating system, usually held in low memory with

interrupt vector.

– User processes then held in high memory.

• Single-partition allocation
– Relocation-register scheme used to protect user processes from

each other, and from changing operating-system code and data.

– Relocation register contains value of smallest physical address;
limit register contains range of logical addresses -- each logical
address must be less than the limit register.

7

12

Contiguous Allocation (Cont.)

• Multiple-partition allocation
– Hole — block of available memory; holes of various size are

scattered throughout memory.

– When a process arrives, it is allocated memory from a hole large
enough to accommodate it.

– Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

Process 5

Process 2

Process 8

OS

Process 5

Process 2

OS

Process 2

OS

Process 2

Process 9 Process 9

Process 5

Process 10

Process 5

13

Dynamic Storage-Allocation Problem

• How to satisfy a request of size n from a list of free holes.

– First-fit: Allocate the first hole that is big enough.

– Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest leftover hole.

– Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

• First-fit and best-fit better than worst-fit in terms of speed
and storage utilization.

8

14

Fragmentation

• External fragmentation -- total memory space exists to
satisfy a request, but it is not contiguous.

• Internal fragmentation -- allocated memory may be slightly
larger than requested memory; this size difference is
memory internal to a partition, but not being used.

• Reduce external fragmentation by compaction.
– Shuffle memory contents to place all free memory together in one

large block.

– Compaction is possible only if relocation is dynamic, and is done
at execution time.

– I/O problem
• Latch job in memory while it is involved in I/O.

• Do I/O only into OS buffers.

15

Paging

• Logical address space of a process can be noncontiguous;
process is allocated physical memory wherever the latter is
available.

• Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).

• Divide logical memory into blocks of same size called pages.

• Keep track of all free frames.

• To run a program of size n pages, need to find n free frames and
load program.

• Set up a page table to translate logical to physical addresses.

• Internal fragmentation.

9

16

Address Translation Scheme

Address generated by CPU is divided into:

• Page number (p) — used as an index into a page table
which contains base address of each page in physical
memory.

• Page offset (d) — combined with base address to define
the physical memory address that is sent to the memory
unit.

17

Address Translation Architecture

CPU p d f d

f

p

Page Table

Physical Memory

Logical
Address

Physical
Address

f

10

18

Paging Example

page 0

page 1

page 2

page 3

Logical
Memory

1

4

3

7

0

1

2

3

page 0

page 2

page 1

page 3

0

1

2

3

4

5

6

7

Page
Table

Physical
Memory

19

Implementation of Page Table

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PTLR) indicates size of the
page table.

• In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

• The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
registers or translation look-aside buffers (TLBs).

11

20

• Associative Registers — parallel search

• Address Translation (p, d)
– If p is in an associative register, get frame number out

– Otherwise, translate through page table in memory

Associative Registers

Page
Number

Frame
Number

21

Effective Access Time

• Associative lookup = ε time unit

• Assume memory cycle time is 1 microsecond

• Hit ratio – percentage of times that a page number is found
in the associative registers; ratio related to number of
associative registers and locality of process

• Hit ratio = α
• Effective Access Time (EAT)

EAT = (1 + ε) α + (2 + ε)(1 – α)

= 2 + ε – α

12

22

Memory Protection

• Memory protection implemented by associating protection

bits with each frame.

• Valid–invalid bit attached to each entry in the page table:

– “valid” indicates that the associated page is in the process' logical

address space, and is thus a legal page.

– “invalid” indicates that the page is not in the process' logical

address space.

• Extend mechanism for access type (read, write, execute)

23

Two Level Paging Scheme

Outer Page
Table

Page Table Physical Memory

page 0

page 1

page 100

page 500

page 708

page 900

page 929

1

500

100

708

929

900

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

13

24

Two Level Paging Example

• A logical address (on 32 bit machine with 4K page size) is
divided into:
– a logical page number consisting of 20 bits

– a page offset consisting of 12 bits

• Since the page table is paged, the page number is further
divided into:
– a 10 bit page number

– a 10 bit offset

• Thus, a logical address is as follows:

– where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

p1 p2 d

Page number Page offset

25

Address–Translation Scheme

• Address–translation scheme for a two–level 32–bit paging
architecture

p1 p2 d

Page number Page offset

p1

p2

d

14

26

Multilevel Paging and Performance

• On a two-level paging scheme, two memory accesses are
required to convert from logical to physical, plus the
memory access for the original reference.

• To make this or higher levels of paging performance
feasible, caching of translation entries is required

• Example:
– 4-level paging scheme; 100 nsec access time; 20 nsec TLB lookup

time; 98% TLB hit rate:

EAT = 0.98 x 120 + 0.02 x 520

= 128 nsec.

– Which is only a 28 percent slowdown in memory access time.

27

Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page.

• Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

• Use hash table to limit the search to one – or at most a few
– page table entries.

15

28

Inverted Page Table Architecture

CPU

Physical
Memory

pid p d

pid p

Inverted Page Table

Search i

i d

Logical
Address

Physical
Address

29

Shared Pages

• Shared code
– One copy of read-only (reentrant) code shared among processes

(I.e. text editors, compilers, window systems).

– Shared code must appear in the same location in the logical
address space of all processes.

• Private code and data
– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere in the
logical address space.

16

30

Shared Pages Example

ed 1

ed 2

ed 3

data 1

Process P1

3
6
4
1

page table

ed 1

ed 2

ed 3

data 3

Process P3

3
6
4
2

page table

ed 1

ed 2

ed 3

data 2

Process P2

3
6
4
7

page table

data 1

data 3

ed 1

ed 3

ed 2

data 2

0

1

2

3

4

5

6

7

8

9

31

Segmentation

• Memory–management scheme that supports a logical user
view of memory.

• A program is a collection of segments. A segment is a
logical unit such as:
– Main program

– Procedure

– Function

– Local variables

– Global variables

– Common block

– Stack

– Heap

– Symbol Table

– Arrays

17

32

Logical View of Segmentation

Segment 1

Segment 4

Segment 2

Segment 3

Physical Memory

Segment 1

Segment 2

Segment 3

Segment 4

User Space

33

Segmentation Architecture

• Logical address consists of a two–tuple:
– <segment-number, offset>

• Segment table – maps two-dimensional user-defined
addresses into one-dimensional physical address; each
entry has:
– base – contains the starting physical address where the segment

resides in memory.

– Limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the segment
table’s location in memory.

• Segment-table length register (STLR) indicates the number
of segments used by a program

18

34

Segmentation Architecture (Cont.)

• Relocation
– dynamic

– by segment table

• Sharing
– shared segments

– same segment number

• Allocation
– first fit/best fit

– external fragmentation

35

Segmentation Architecture (Cont.)

• Protection. With each entry in segment table associate:
– valid/invalid bit

– read/write/execute access modes

• Protection bits are associated with segments; code sharing
occurs at the segment level.

• Since segments vary in length, memory allocation is a
dynamic storage–allocation problem.

19

36

Segmentation Example

editor

data 1

data 2

Physical Memory

editor

data 1

segment 0

segment 1

editor

segment 0

segment 1

data 2

Logical memory for P1

Logical memory for P2

limit base

25286

4425

43062

68348

0

1

limit base

25286

8850

43062

90003

0

1

90003

43062

68348

72773

98553

37

Segmentation with Paging – MULTICS

• The MULTICS system solved the problems of external
fragmentation and lengthy search times by paging the
segments.

• Solution differs from pure segmentation in that the
segment–table entry contains not the base address of the
segment, but rather the base address of a page table for the
given segment.

20

38

MULTICS Address Translation Scheme

+

s d

STBR

segment
length

page–table
base

Segment table

≥

yes

d
no

trap
p d′

+ f f d′

Physical
Memory

39

Comparing Memory–Management Strategies

• Hardware support

• Performance

• Fragmentation
– Internal and External

• Relocation

• Swapping

• Sharing

• Protection

