CS 502

Spring 99
WPI MetroWest/Southboro Campus

Background

Logical versus Physical Address Space
Swapping

Contiguous Allocation

Static Partitions
Dynamic Partitions

Paging
Segmentation
Segmentation with Paging

Program must be brought into memory and placed within a
process for it to be executed.

Process Input Queue — collection of processes on the disk
that are waiting to be brought into memory for execution.
User programs go through several steps before being
executed.

Compile Time — If final physical memory location is
known a prioriabsolute code can be generated. This
implies that code must be recompiled if starting location
changes.

L oad Time — Compiler or assembler must generate
relocatable code if memory location is not known at
compile time. Loader transforms relocatable code based
on starting load address.

Execution Time — Binding is delayed until run time.

This enables the process to be moved during its execution
from one portion of memory to another. This requires
hardware support.

Routine is not loaded into memory until it is called.

Better memory-space utilization; unused routine is never
loaded.

Useful when large amounts of code are needed to handle
infrequently occurring cases.

No special support from the operating system is required,
implemented through program design.

Linking of module is deferred until execution time.

Small piece of code, called a stub, is used to locate the
appropriate memory-resident library routine.

Stub replaces itself with the address of the routine, and
executes the routine.

Operating System needed to check if routine is in
processes’ memory address

Keep in memory only those instructions and data that are
needed at any given time.

Needed when process is larger than amount of memory
allocated to it.

Implemented by user, no special support needed from
operating system; programming design of overlay structure
Is complex.

The concept of a logical address space that is bound to a
separate physical address space is central to proper
memory management.

Logical address — generated by the CPU; also referred to as a
virtual address.

Physical address — address seen by the memory unit.

Logical and physical addresses are the same in compile-
time and load-time address binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

Hardware device that maps virtual to physical addresses.

In MMU scheme, the value in the relocation register is
added to every address generated by a user process at the
time it is sent to memory.

The user program deals witbgical addresses; it never
sees theeal physical addresses.

A process can be swapped temporarily out of memory to a backing
store, and then brought back into memory for continued execution.

Backing store — fast disk large enough to accommodate copies of all
memory images for all users; must provide direct access to these
memory images.

Roll out, roll in — swapping variant used for priority-based scheduling
algorithms; lower-priority process is swapped out so higher-priority
process can be loaded and executed.

Major part of swap time is transfer time; total transfer time is directly
proportional to the amount of memory swapped.

Modified versions of swapping are found on many systems, i.e., UNIX
and Microsoft Windows.

System

Swap Process

Out Py

>
Swap Pr(|)3ce$
In 2
-€

User ‘ ‘ I
Space (]]

10

Main memory usually into two partitions:

Resident operating system, usually held in low memory with
interrupt vector.

User processes then held in high memory.

Single-partition allocation

Relocation-register scheme used to protect user processes from
each other, and from changing operating-system code and data.
Relocation register contains value of smallest physical address;
limit register contains range of logical addresses -- each logical
address must be less than the limit register.

11

Multiple-partition allocation
Hole — block of available memory; holes of various size are
scattered throughout memory.
When a process arrives, it is allocated memory from a hole large
enough to accommodate it.
Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

(O (O (O (O
Process 5 Process 5 Process 5 Process 5
Process 9 Process 9
Process 8 Process 10
Process 2 Process 2 Process 2 Process 2 1

How to satisfy a request of size n from a list of free holes.
First-fit: Allocate the first hole that is big enough.

Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size. Produces
the smallest |eftover hole.

Worst-fit: Allocate the largest hole; must also search
entire list. Produces the largest leftover hole.

First-fit and best-fit better than worst-fit in terms of speed
and storage utilization.

13

External fragmentation -- total memory space exists to
satisfy a request, but it is not contiguous.

Internal fragmentation -- allocated memory may be slightly
larger than requested memory; this size difference is
memory internal to a partition, but not being used.

Reduce external fragmentation by compaction.
Shuffle memory contents to place all free memory together in one
large block.
Compaction is possible only if relocation is dynamic, and is done
at execution time.
I/O problem
Latch job in memory while it is involved in 1/0.

Do I/O only into OS buffers.
14

Logical address space of a process can be noncontiguous;
process is allocated physical memory wherever the latter is
available.

Divide physical memory into fixed-sized blocks called frames
(size is power of 2, between 512 bytes and 8192 bytes).

Divide logical memory into blocks of same size called pages.
Keep track of all free frames.

To run a program of size n pages, need to find n free frames and
load program.

Set up a page table to translate logical to physical addresses.
Internal fragmentation.

15

Address generated by CPU is divided into:

Page numberp] — used as an index into a page table
which contains base address of each page in physical
memory.

Page offsetd) — combined with base address to define
the physical memory address that is sent to the memory
unit.

16

Logical Physical
Address Address
f
CPU p f —>{ |
/'Y
> p

Physical Memory

Page Tabl
age e 17

0
1| pageO
e 0 2
pag ol 1
page 1 114 3| page2
2| 3
page 2 3| 7 4 page 1
Page
page 3 Table 5
Logical 6
Memory
7| page3
Physical
Memory 18

Page table is kept in main memory.
Page-table base regist@PTBR) points to the page table.

Page-table length regist¢PTLR) indicates size of the

page table.

In this scheme every data/instruction access requires two
memory accesses. One for the page table and one for the
data/instruction.

The two memory access problem can be solved by the use
of a special fast-lookup hardware cache called associative
registers or translation look-aside buffers (TLBS).

19

10

Associative Registers — parallel search

Page Frame
Number Number

Address Translation (p, d)
If p is in an associative register, get frame number out
Otherwise, translate through page table in memory

20

Associative lookup = time unit
Assume memory cycle time is 1 microsecond

Hit ratio — percentage of times that a page number is found
in the associative registers; ratio related to number of
associative registers and locality of process

Hit ratio =a
Effective Access Time (EAT)
EAT=(1+e)a+ (2+e)(1-0)
=2+e—-0

21

11

Memory protection implemented by associating protection
bits with each frame.

Valid—invalid bit attached to each entry in the page table:

“valid” indicates that the associated page is in the process' logical
address space, and is thus a legal page.

“invalid” indicates that the page is not in the process' logical
address space.

Extend mechanism for access type (read, write, execute)

22

Outer Page
Table

page 0
% pagel

>< .
page 500
/r page 708

>< o
page 929

/ | — 1 —
500 ~—
\A 100 L —]
708 |
T e |
900]
Page Table

Physical Memory 55

12

(RN O O RO
A logical address (on 32 bit machine with 4K page size) is

divided into:

a logical page number consisting of 20 bits

a page offset consisting of 12 hits
Since the page table is paged, the page number is further
divided into:

a 10 bit page number

a 10 bit offset

Thus, a logical address is as follows:

Bl [

where pl is an index into the outer page table, and p2 is the
displacement within the page of the inner page table.

24

(RN 1 O OO
Address—translation scheme for a two—level 32—bit paging
architecture

Page number Page of fset
Py P2 | d

i

pi

25

13

On a two-level paging scheme, two memory accesses are
required to convert from logical to physical, plus the
memory access for the original reference.

To make this or higher levels of paging performance
feasible, caching of translation entries is required
Example:

4-level paging scheme; 100 nsec access time; 20 nsec TLB lookup
time; 98% TLB hit rate:

EAT =0.98 x 120 + 0.02 x 520
=128 nsec.
Which is only a 28 percent slowdown in memory access time.

26

One entry for each real page of memory.

Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page.

Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs.

Use hash table to limit the search to one — or at most a few
— page table entries.

27

14

Logical
Address

Physical

cru [*pd] p | d |
'

Address
T

A

Search

«—

Inverted Page Table

Physical
Memory

28

Shared code

One copy of read-only (reentrant) code shared among processes

(I.e. text editors, compilers, window systems).

Shared code must appear in the same location in the logical
address space of all processes.

Private code and data
Each process keeps a separate copy of the code and data.

The pages for the private code and data can appear anywhere in th

logical address space.

29

1%

15

edl

ed 2

ed3

data 1 page table

Process P,

edl

ed 2

ed3

data3 page table

Process P,

o]
[1] data1
|Z data 3
ed1 (3] et
ed 2 (2] ed3
ed3 E
data2 | Ppagetable (6] ez
Process P, [7] data2
5]
o]

30

Memory—management scheme that supports a logical user

view of memory.

A program is a collection of segments. A segmentis a
logical unit such as:

Main program
Procedure
Function

Local variables
Global variables

Common block
Stack

Heap

Symbol Table
Arrays

31

16

Segment 1

Segment 4

Segment 2

Segment 3

User Space Physical Memory
32

Logical address consists of a two—tuple:
<segment-number, offset>

Segment table — maps two-dimensional user-defined

addresses into one-dimensional physical address; each

entry has:

base — contains the starting physical address where the segment
resides in memory.

Limit — specifies the length of the segment.
Segment-table base register (STBR) points to the segment
table’s location in memory.
Segment-table length register (STLR) indicates the number
of segments used by a program

33

17

Relocation

dynamic

by segment table
Sharing

shared segments

same segment number
Allocation

first fit/best fit

external fragmentation

34

Protection. With each entry in segment table associate:

valid/invalid bit
read/write/execute access modes

Protection bits are associated with segments; code sharing
occurs at the segment level.

Since segments vary in length, memory allocation is a
dynamic storage—allocation problem.

35

editor limit | base 43062
0 | 25286 | 43062 i
1 [4425 | 68348 editor
segment O
68348
at
segment 1 72113
Logical memory for P,
90003
data 2
editor limit | base
0 | 25286 | 43062 98553
1 | 8850 | 90003
segment 0 data 2
segment 1 Physical Memory

Logical memory for P, 3

The MULTICS system solved the problems of external
fragmentation and lengthy search times by paging the
segments.

Solution differs from pure segmentation in that the
segment—table entry contains not the base address of the
segment, but rather the base addresspagjatable for the
given segment.

37

19

segment |page-tablg no
length base
p d
trap
Segment table
STBR
Physical
Memory
>] a >

38

Hardware support
Performance

Fragmentation
Internal and External

Relocation
Swapping
Sharing
Protection

39

20

