CS 502

Spring 99
WPI MetroWest/Southboro Campus

Process Concept

Process Scheduling
Operations on Processes
Cooperating Processes
Threads

Interprocess Communication

An operating system must execute a variety of programs:
Batch system -- jobs
Time-shared systems -- user programs or tasks

Textbook uses the term job and process almost
interchangeably

Process -- a program in execution; process execution must
progress in a sequential fashion,
A process includes:

Instruction Address

Stack

Data Section

As a process executes, it changese.
New: The process is being created.
Running: Instructions are being executed.
Waiting: The process is waiting for some event to occur.
Ready: The process is waiting to be assigned to a processor.
Terminated: The process has finished execution.

Diagram of process state:

interrupt
reaj

Scheduler dispatch
1/0 or event completion @ 1/0 or event wait

Information associated with each process
Process State
Instruction Address
CPU registers
CPU scheduling information
Memory-management information
Accounting information
I/O status information

Job queue -- set of all processes in the system.

Ready queue -- set of all processes residing in main memory, ready
and waiting to execute.

Device queues -- set of processes waiting for an I/O device. Typically
one per device or device controller.

As processes execute, they migrate between the various queues:

|)

Job queue Ready queue

enter

1/0 waiting
queue(s)

Long-term scheduler (or job scheduler) -- selects which processes
should be brought into the read queue.

Short-term scheduler (or CPU scheduler) selects which process should
be executed next and allocates the CPU.

Long-term Short-term
enter | /J_\ end
Job queue Ready queue CPU

1/0 waiting
queue(s)

Short-term scheduler is invoked very frequently (milliseconds)
=> must be fast

Long-term scheduler is invoked very infrequently (seconds, minutes)
=> may be slow

The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

I/O-bound process -- spends more time doing I/0 than computations;
many short CPU bursts.

CPU-bound process -- spends more time doing computations; a few very
long CPU bursts.

When CPU switches to another process, the system must save the stat
of the old process and load the saved state for the new process.

Context-switch time is overhead; the system does no useful work while
switching.

Time dependent on hardware support.

11°

Parent process creates children processes, which in turn create other
processes, forming a tree of processes.
Resource sharing possibilities
Parent and child share all resources
Children share subset of parent’s resources
Parent and child share no resources
Execution model possibilities
Parent and children execute concurrently
Parent waits until children terminate

Address Space
Child is a duplicate of the parent
Child has a program loaded into it
UNIX examples
fork system call creates new process

execve system call used after a fork to replace the process’ memory space
with a new program

10

Process executes last statement and asks the operating system to dele
it (exit)

Ability to output data from child to parent (via wait)

Process’ resources are deallocated by the operating system
Parent may terminate execution of children processes (abort).

Child has exceeded allocated resources

Task assigned to the child is no longer required

Parent is exiting.

Operating system may not allow child to continue if its parent terminates.
This may result in cascading termination

11

e

Independent process cannot affect or be affected by the execution of
another process.
Cooperating process can affect or be affected by the execution of
another process.
Advantages of process cooperation:

Information sharing

Computation speed-up

Modularity

Convenience
Mechanism for cooperation

File system

Shared Memory

Message passing

Other IPC ...
12

Paradigm for cooperating processes; producer produces information
that is consumed by a consumer process.
Unbounded-buffer places no practical limit on the buffering between the
producer and consumer
bounded-buffer assumes that there is a limit on the buffering between the
producer and consumer

13

Shared data
const n = MAX_BUF;
typedef struct {...} item_t;
intin, out;
item_t * buffer[n];

Producer process
item_t * nextp;
repeat
)}lproduce an item in nextp
\}\-/lrlile (((in + 1) % n) == out) do no-op
buffer[in] = nextp;

in=(n+1)%n;
until false;

14

Consumer process

itemt * nextc;
repeat
while (in == out) no-op;
nextc = buffer[out];
out = (out + 1) %n;
< consune buffer >

forever

Solution is correct, but can only fill up n-1 buffer.

15

A thread (or lightweight process) is a basic unit of CPU utilization; it
consists of:

instruction address
register set
stack space
A thread shares with its peer threads its:
code section
data section
operating system resources
... collectively known as a task
A traditional or heavyweight process is equal to a task with one thread.

16

In a multiple threaded task, while one server thread is blocked and
waiting, another thread in the same task can run.

Cooperation of multiple threads in same task confers higher throughput
and improved performance.

Applications that require sharing a common buffer (l.e., producer-
consumer) benefit from thread utilization.

Threads provide a mechanism that allows sequential processes to mak
blocking system calls while also achieving parallelism.

Kernel supported threads (Mach and OS/2).

User-level threads; supported above the kernel via a set of library calls
at the user level (Project Andrew from CMU).

Hyprid approach implements both user-level and kernel-supported
threads (NT and Solaris 2).

17

1%

Mechanisms for processes to communicate and to synchronize their
actions.
Message system -- processes communicate with each other without
resorting to shared variables.
IPC facility provides two operations:
send(message) -- message size fixed or variable
receive(message)
If P and Q with to communicate, they need to:
establish a communication link between them
exchange messages via send/receive
Implementation of the communication link
physical (e.g. shared memory, hardware bus)
logical (e.g. logical properties)

18

How are links established?
Can a link be associated with more than two processes?

How many links can there be between every pair of communicating
processes?

What is the capacity of a link?

Is the size of a message that the link can accommodate fixed or
variable?

Is a link unidirectional or bidirectional?

19

10

Processes must name each other explicitly:

send(P, message) -- send a message to process P

receive(Q, message) -- receive a message from process Q
Properties of the communication link:

Links are established automatically.

A link is associated with exactly one pair of communicating processes.

Between each pair there exists exactly one link.

The link may be unidirectional, but is usually bidirectional.

20

Messages are directed and received from mailboxes (also
referred to as ports).

Each mailbox has a unique id.

Processes con communicate only if they share a mailbox.

Properties of communication link:
Link established only if processes share a common mailbox.
A link may be associated with many processes.
Each pair of processes may share several communication links.
Links may be unidirectional or bidirectional.

Operations
Create a new mailbox
Send and receive messages through mailbox

Destroy a mailbox
21

11

Basic Concepts

Scheduling Criteria
Scheduling Algorithms
Multiple-Processor Scheduling
Real-Time Scheduling
Algorithm Evaluation

22

Maximum CPU utilization obtained with multiprogramming.
CPU-I/O Burst Cycle -- Process execution consists of a cycle of CPU
execution and I/O wait.
CPU burst duration:
200

= =
o al
o o
>=0

frequency

[8)]

o
—|
|

o

%
4
&

NN A . A
burst duration (milliseconds)
23

12

Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of therm.
CPU Scheduling decisions may take place when a process
switches from running to waiting state.
switches from running to read state.
switches from waiting to ready.
terminates
Scheduling onlyunder the first and last mnpreemptive.

All other scheduling ipreemptive.

24

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that
program
Dispatch latency -- time it takes for the dispatcher to stop
one process and start another running.

25

13

CPU utilization -- keep the CPU as busy as possible

Throughput -- number of processes that complete their
execution per time unit

Turnaround time -- amount of time (completion - arrival)
to execute a particular process

Waiting time -- amount of time a process has been in the
ready queue

Response time -- amount of time it takes from when a
request was submitted until the first response is produced,
not output.

26

Max CPU utilization
Max throughput

Min turnaround time
Min waiting time
Min response time

27

14

Example:

P1 with CPU burst of 24

P2 with CPU burst of 3

P3 with CPU burst of 3
Suppose that the processes arrive in the order P1, P2, P3
The Gantt chart for the schedule is:

2% 3 3
| PL [2 |

|
0 24 27 30

Waiting time for P1=0; P2=24; P3=27
Average waiting time: (0 + 24 + 27)/3 = 17

28

Suppose the processes arrive in the order:
P2; P3; P1

The Gantt chart for the schedule is:

24

| P |
6 30

3 3
R | m
3

|
0
Waiting time for P1 =6; P2=0; P3=3
Average wating time: (6 + 0+ 3)/3=3

Convoy effect: short processes stack up behind the long
process

29

15

Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

Two schemes:

Nonpreemptive -- once the CPU is given to the process, it cannot
be preempted until tompletes its CPU burst.

Preemptive -- if a new process arrives with CPU burst length less
than the remaining time of the current executing process, then
preempt. This scheme is also known as Shortest-Remaining-
Time_First (SRTF).
SJF is provably optimal with respect to the average waiting
time (i.e. it always gives the minimum average waiting
time for a given set of processes).

30

Process Arrival Burst
P1 0 7
P2 2 4
P3 4 1
P4 5 1

SJF (preemptive)

PL

PL

P2

P2

P4 P2 P2

0

1

P1

P2

Average waiting time = ?

31

16

Can only estimate the length.

Can be done by using the length of previous CPU bursts,

using exponential averaging.
t, = actual length oftnCPU burst
T,., = predicted value for the next CPU burst
a,0<sas<1
Define:
T =0t + (1-0) T,

32

a=0
Tn +1 = Tn
Recent history does not count
a=1
Tn +1 = tn
Only the actual last CPU burst counts

Consider a CPU burst sequence of 6, 4, 6, 4, 12, 12
and an initial guess of 10, and= 1/2

Index 0 1 2 3 4 5 6
T 10
t 6 4 6 4 12 12

33

17

A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest
priority
(smallest integex highest priority)

preemptive

nonpreemptive
SJF is priority scheduling where priority is the predicted
next CPU burst time.

Problem :: Starvation -- low priority processes may never
execute.

Solution :: Aging -- a variation of the scheme where the

priority of a process increases over time.
34

Each process gets a small unit of CPU time (time quantum), usually 1-
to 100 milliseconds. After the time has elapsed, the process is
preempted and added to the efdhe ready queue.
If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most g time
units at once. No process waits more than (n-1)qg time units.
Performance

large g FCFS

small g g must be large with respect t context switch, otherwise overhead

is too high.
Typically, higher average turnaround time than SRTF, but better
response.

35

18

The Gantt chart is:

36

Ready queue is partitioned into separate queues
Foreground (interactive)
Background (batch)

Each queue has its own scheduling algorithm,
Foreground = RR
Background = FCFS

Scheduling moust be done between the queues.

Fixed priority scheduling; i.e. serve all from foreground then from

background. Possiblity of starvation.

Time slice -- each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e.,
80% to foreground in RR
20% to background in FCFS

37

A process can move between the various queues; aging ca
be implemented this way.

Multilevel feedback queue scheduler defined by the
following parameters:
number of queues
scheduling algorithm for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process

method used to determine which queue a process will enter when
that process needs service.

38

Three queues:
QO -- time quantum 8 milliseconds
Q1 -- time quantum 16 milleseconds
Q2 -- FCFS
Scheduling
A new job enters QO, which is seved FCFS. When it gains CPU,
job receives 8 msec. If it does not minish, job is moved to Q1.

At Q1, job is again served FCFS and receives 16 additional msec.
If it still does not complete, it is preempted and moved to queue

Q2.

Strict priority between queues.

39

20

CPU scheduling becomes more complex when multiple
CPUs are available.

SMP -- Homogeneous processors within a multiprocessor.

Each processor runs scheduling code
Single ready queue
Locks to protext data structures

AMP -- Asymmetric multiprocessing; only one processor
access the system data structures and runs OS code,
alleviates the need for data sharing.

40

21

