
1

Process Management

CS 502

Spring 99

WPI MetroWest/Southboro Campus

1

Processes

• Process Concept

• Process Scheduling

• Operations on Processes

• Cooperating Processes

• Threads

• Interprocess Communication

2

2

Process Concept

• An operating system must execute a variety of programs:
– Batch system -- jobs

– Time-shared systems -- user programs or tasks

• Textbook uses the term job and process almost
interchangeably

• Process -- a program in execution; process execution must
progress in a sequential fashion,

• A process includes:
– Instruction Address

– Stack

– Data Section

3

Process State

• As a process executes, it changes state.
– New: The process is being created.

– Running: Instructions are being executed.

– Waiting: The process is waiting for some event to occur.

– Ready: The process is waiting to be assigned to a processor.

– Terminated: The process has finished execution.

• Diagram of process state:

new

waiting

ready

terminated

running

admitted interrupt exit

I/O or event waitI/O or event completion

Scheduler dispatch

3

4

Process Control Block (PCB)

• Information associated with each process
– Process State

– Instruction Address

– CPU registers

– CPU scheduling information

– Memory-management information

– Accounting information

– I/O status information

5

Process Scheduling Queues

• Job queue -- set of all processes in the system.

• Ready queue -- set of all processes residing in main memory, ready
and waiting to execute.

• Device queues -- set of processes waiting for an I/O device. Typically
one per device or device controller.

• As processes execute, they migrate between the various queues:

Job queue Ready queue CPU

I/O waiting
queue(s)

Active I/O

enter end

4

6

Schedulers

• Long-term scheduler (or job scheduler) -- selects which processes
should be brought into the read queue.

• Short-term scheduler (or CPU scheduler) selects which process should
be executed next and allocates the CPU.

Job queue Ready queue CPU

I/O waiting
queue(s)

Active I/O

enter end

Long-term Short-term

7

Schedulers (Cont.)

• Short-term scheduler is invoked very frequently (milliseconds)
=> must be fast

• Long-term scheduler is invoked very infrequently (seconds, minutes)
=> may be slow

• The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:
– I/O-bound process -- spends more time doing I/O than computations;

many short CPU bursts.

– CPU-bound process -- spends more time doing computations; a few very
long CPU bursts.

5

8

Context Switch

• When CPU switches to another process, the system must save the state
of the old process and load the saved state for the new process.

• Context-switch time is overhead; the system does no useful work while
switching.

• Time dependent on hardware support.

9

Process Creation

• Parent process creates children processes, which in turn create other
processes, forming a tree of processes.

• Resource sharing possibilities
– Parent and child share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution model possibilities
– Parent and children execute concurrently

– Parent waits until children terminate

6

10

Process Creation (Cont.)

• Address Space
– Child is a duplicate of the parent

– Child has a program loaded into it

• UNIX examples
– fork system call creates new process

– execve system call used after a fork to replace the process’ memory space
with a new program

11

Process Termination

• Process executes last statement and asks the operating system to delete
it (exit)
– Ability to output data from child to parent (via wait)

– Process’ resources are deallocated by the operating system

• Parent may terminate execution of children processes (abort).
– Child has exceeded allocated resources

– Task assigned to the child is no longer required

– Parent is exiting.
• Operating system may not allow child to continue if its parent terminates.

• This may result in cascading termination

7

12

Cooperating Processes

• Independent process cannot affect or be affected by the execution of
another process.

• Cooperating process can affect or be affected by the execution of
another process.

• Advantages of process cooperation:
– Information sharing

– Computation speed-up

– Modularity

– Convenience

• Mechanism for cooperation
– File system

– Shared Memory

– Message passing

– Other IPC ...

13

Producer-Consumer Problem

• Paradigm for cooperating processes; producer produces information
that is consumed by a consumer process.
– Unbounded-buffer places no practical limit on the buffering between the

producer and consumer

– bounded-buffer assumes that there is a limit on the buffering between the
producer and consumer

8

14

Bounded-Buffer -- Shared-Memory Solution

• Shared data

• Producer process

const n = MAX_BUF;
typedef struct {…} item_t;
int in, out;
item_t * buffer[n];

item_t * nextp;

repeat
 …
 // produce an item in nextp
 …
 while (((in + 1) % n) == out) do no-op
 buffer[in] = nextp;
 in = (in + 1) % n;
until false;

15

Bounded–Buffer (Cont.)

• Consumer process

• Solution is correct, but can only fill up n-1 buffer.

item_t * nextc;

repeat
 while (in == out) no-op;
 nextc = buffer[out];
 out = (out + 1) % n;
 ...
 < consume buffer >
 ...
forever

9

16

Threads

• A thread (or lightweight process) is a basic unit of CPU utilization; it
consists of:
– instruction address

– register set

– stack space

• A thread shares with its peer threads its:
– code section

– data section

– operating system resources

– … collectively known as a task

• A traditional or heavyweight process is equal to a task with one thread.

17

Threads (Cont.)

• In a multiple threaded task, while one server thread is blocked and
waiting, another thread in the same task can run.
– Cooperation of multiple threads in same task confers higher throughput

and improved performance.

– Applications that require sharing a common buffer (I.e., producer-
consumer) benefit from thread utilization.

• Threads provide a mechanism that allows sequential processes to make
blocking system calls while also achieving parallelism.

• Kernel supported threads (Mach and OS/2).

• User-level threads; supported above the kernel via a set of library calls
at the user level (Project Andrew from CMU).

• Hyprid approach implements both user-level and kernel-supported
threads (NT and Solaris 2).

10

18

Interprocess Communication (IPC)

• Mechanisms for processes to communicate and to synchronize their
actions.

• Message system -- processes communicate with each other without
resorting to shared variables.

• IPC facility provides two operations:
– send(message) -- message size fixed or variable

– receive(message)

• If P and Q with to communicate, they need to:
– establish a communication link between them

– exchange messages via send/receive

• Implementation of the communication link
– physical (e.g. shared memory, hardware bus)

– logical (e.g. logical properties)

19

Implementation Questions

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of communicating
processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or
variable?

• Is a link unidirectional or bidirectional?

11

20

Direct Communication

• Processes must name each other explicitly:
– send(P, message) -- send a message to process P

– receive(Q, message) -- receive a message from process Q

• Properties of the communication link:
– Links are established automatically.

– A link is associated with exactly one pair of communicating processes.

– Between each pair there exists exactly one link.

– The link may be unidirectional, but is usually bidirectional.

21

Indirect Communication

• Messages are directed and received from mailboxes (also
referred to as ports).
– Each mailbox has a unique id.

– Processes con communicate only if they share a mailbox.

• Properties of communication link:
– Link established only if processes share a common mailbox.
– A link may be associated with many processes.
– Each pair of processes may share several communication links.
– Links may be unidirectional or bidirectional.

• Operations
– Create a new mailbox
– Send and receive messages through mailbox
– Destroy a mailbox

12

22

CPU Scheduling

• Basic Concepts

• Scheduling Criteria

• Scheduling Algorithms

• Multiple-Processor Scheduling

• Real-Time Scheduling

• Algorithm Evaluation

23

Basic Concepts

• Maximum CPU utilization obtained with multiprogramming.

• CPU-I/O Burst Cycle -- Process execution consists of a cycle of CPU
execution and I/O wait.

• CPU burst duration:

0

50

100

150

200

0 4 8 12 16 20 24 28 32

burst duration (milliseconds)

fre
qu

en
cy

13

24

CPU Scheduler

• Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of therm.

• CPU Scheduling decisions may take place when a process:
– switches from running to waiting state.

– switches from running to read state.

– switches from waiting to ready.

– terminates

• Scheduling only under the first and last is nonpreemptive.

• All other scheduling is preemptive.

25

Dispatcher

• Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:
– switching context

– switching to user mode

– jumping to the proper location in the user program to restart that
program

• Dispatch latency -- time it takes for the dispatcher to stop
one process and start another running.

14

26

Scheduling Criteria

• CPU utilization -- keep the CPU as busy as possible

• Throughput -- number of processes that complete their
execution per time unit

• Turnaround time -- amount of time (completion - arrival)
to execute a particular process

• Waiting time -- amount of time a process has been in the
ready queue

• Response time -- amount of time it takes from when a
request was submitted until the first response is produced,
not output.

27

Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

15

28

First-Come, First-Served (FCFS) Scheduling

• Example:
• P1 with CPU burst of 24

• P2 with CPU burst of 3

• P3 with CPU burst of 3

• Suppose that the processes arrive in the order P1, P2, P3
The Gantt chart for the schedule is:

• Waiting time for P1=0; P2=24; P3=27

• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 3 3

0 24 27 30

29

FCFS Scheduling (Cont.)

• Suppose the processes arrive in the order:
– P2; P3; P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3

• Average wating time: (6 + 0 + 3)/3 = 3

• Convoy effect: short processes stack up behind the long
process

P1P2 P3

243 3

300 3 6

16

30

Shortest-Job-First (SJF) Scheduling

• Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

• Two schemes:
– Nonpreemptive -- once the CPU is given to the process, it cannot

be preempted until it completes its CPU burst.

– Preemptive -- if a new process arrives with CPU burst length less
than the remaining time of the current executing process, then
preempt. This scheme is also known as Shortest-Remaining-
Time_First (SRTF).

• SJF is provably optimal with respect to the average waiting
time (i.e. it always gives the minimum average waiting
time for a given set of processes).

31

• SJF (preemptive)

• Average waiting time = ?

Example of Preemptive SJF (SRTF)

Process Arrival Burst
P1 0 7
P2 2 4
P3 4 1
P4 5 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P1 P2 P3 P4

P1 P1 P2 P2 P3 P4 P2 P2 P1 P1 P1 P1 P1

17

32

Determining Length of Next CPU Burst

• Can only estimate the length.

• Can be done by using the length of previous CPU bursts,
using exponential averaging.
– tn = actual length of nth CPU burst

τn +1 = predicted value for the next CPU burst

α, 0 ≤ α ≤ 1
– Define:

τn +1 = α tn + (1-α) τn

33

Examples of Exponential Averaging

α = 0
τn +1 = τn

– Recent history does not count

α = 1
τn +1 = tn

– Only the actual last CPU burst counts

• Consider a CPU burst sequence of 6, 4, 6, 4, 12, 12
and an initial guess of 10, and α = 1/2

Index 0 1 2 3 4 5 6
τ 10
t 6 4 6 4 12 12

18

34

Priority Scheduling

• A priority number (integer) is associated with each process

• The CPU is allocated to the process with the highest
priority
(smallest integer ≡ highest priority)
– preemptive

– nonpreemptive

• SJF is priority scheduling where priority is the predicted
next CPU burst time.

• Problem :: Starvation -- low priority processes may never
execute.

• Solution :: Aging -- a variation of the scheme where the
priority of a process increases over time.

35

Round Robin (RR)

• Each process gets a small unit of CPU time (time quantum), usually 1-
to 100 milliseconds. After the time has elapsed, the process is
preempted and added to the end of the ready queue.

• If there are n processes in the ready queue and the time quantum is q,
then each process gets 1/n of the CPU time in chunks of at most q time
units at once. No process waits more than (n-1)q time units.

• Performance
– large q FCFS

– small q q must be large with respect t context switch, otherwise overhead
is too high.

• Typically, higher average turnaround time than SRTF, but better
response.

19

36

Example: RR with Time Quantum = 20

• The Gantt chart is:

37

Multilevel Queue

• Ready queue is partitioned into separate queues
– Foreground (interactive)

– Background (batch)

• Each queue has its own scheduling algorithm,
– Foreground = RR

– Background = FCFS

• Scheduling moust be done between the queues.
– Fixed priority scheduling; i.e. serve all from foreground then from

background. Possiblity of starvation.

– Time slice -- each queue gets a certain amount of CPU time which
it can schedule amongst its processes; i.e.,

• 80% to foreground in RR

• 20% to background in FCFS

20

38

Multilevel Feedback Queue

• A process can move between the various queues; aging can
be implemented this way.

• Multilevel feedback queue scheduler defined by the
following parameters:
– number of queues

– scheduling algorithm for each queue

– method used to determine when to upgrade a process

– method used to determine when to demote a process

– method used to determine which queue a process will enter when
that process needs service.

39

Example of Multilevel Feedback Queue

• Three queues:
– Q0 -- time quantum 8 milliseconds

– Q1 -- time quantum 16 milleseconds

– Q2 -- FCFS

• Scheduling
– A new job enters Q0, which is seved FCFS. When it gains CPU,

job receives 8 msec. If it does not minish, job is moved to Q1.

– At Q1, job is again served FCFS and receives 16 additional msec.
If it still does not complete, it is preempted and moved to queue
Q2.

– Strict priority between queues.

21

40

Multiple-Processor Scheduling

• CPU scheduling becomes more complex when multiple
CPUs are available.

• SMP -- Homogeneous processors within a multiprocessor.
– Each processor runs scheduling code

– Single ready queue

– Locks to protext data structures

• AMP -- Asymmetric multiprocessing; only one processor
access the system data structures and runs OS code,
alleviates the need for data sharing.

