
1

Process Synchronization

&6����
6SULQJ���

:3,�0HWUR:HVW�6RXWKERUR�&DPSXV

1

Process Synchronization

• Background

• The Critical Section Problem

• Synchronization Hardware

• Semaphores

• Classical Problems of Synchronization

• Critical Regions

• Monitors

• Synchronization in NT

• Atomic Transactions

2

2

Background

• Concurrent access to shared data may result in data
inconsistency.
– Examples?

• Maintaining data consistency requires mechanisms to ensure
the orderly execution of cooperating processes.

• Recall the shared-memory solution to the bounded-buffer
problem, which allowed at most (n - 1) items in the shared
buffer at the same time. A solution where all n buffers are
used is not simple.
– Suppose that we modify the producer-consumer code by adding a

variable counter, initialized to 0 and incremented each time a new item
is added to the buffer.

3

Bounded-Buffer

• Shared Data
 const int n = MAX_BUF;
 typedef struct {…} item_t;
 int in, out;
 int counter;
 item_t * buffer[n];
 in, out, counter = 0;

• Producer process
 item_t * nextp;

do {

 …

 // produce an item in nextp

 …

 while (counter == n) ;

 buffer[in] = nextp;

 in = (in + 1) % n;

 counter = counter + 1;

 } while (TRUE);

3

4

Bounded-Buffer (Cont.)

• Consumer process
 item_t * nextc;

do {

 while (counter == 0) ;

 nextc = buffer[out];

 out = (out + 1) % n;

 counter = counter - 1;

 …

 // consume the item in nextc

 …

 } while (TRUE);

• The statements:

counter = counter + 1;

counter = counter - 1;

must be executed atomically.

5

The Critical-Section Problem

• n processes all competing to use some shared data.

• Each process has a code segment, called a critical section, in which the
shared data is accessed.

• Problem: ensure that when one process is executing in its critical
section, no other process is allowed to execute in its critical section.

• General structure of a process Pi:

do

 entry section

 critical section

 exit section

 remainder section
while (true)

4

6

Properties of a solution

1. Mutual Exclusion. If process Pi is executing in its critical section, then
no other processes can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and there
exist some processes that wish to enter their critical section, then the
selection of the processes that will enter the critical section next cannot
be postponed indefinitely.

3. Bounded Waiting. A bound must exist on the number of times that
other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before that
request is granted.

➙ Assumptions:
– Each process executes at a nonzero speed.

– No assumption concerning the relative speed of the n processes.

7

Initial Attempts to Solve Problem

• Only two processes, P0 and P1
• Processes may share some common variables to

synchronize their actions.

• Recall general structure of process Pi (others are Pj)

do

 entry section

 critical section

 exit section

 remainder section
while (true)

5

8

Algorithm 1

• Shared variables
– int turn; /* 0..1 */

initially turn = 0.

– turn = I ⇒ Pi can enter its critical section

• Process Pi:

• What properties does this solution satisfy?
– Satisfies mutual exclusion

– Does not satisfy progress

do

 while (turn != i) ;

 critical section

 turn = j

 remainder section
while (true)

9

• Shared variables
– boolean flag[2];

initially flag[0] = flag[1] = false.

– flag[i] = true ⇒ Pi ready to enter its critical section

• Process Pi:

• What properties does this solution satisfy?
– Satisfies mutual exclusion

– Does not satisfy progress

Algorithm 2a

do

 flag[i] = true;

 while (flag[j] == true) ;

 critical section

 flag[i] = false

 remainder section
while (true)

6

10

• Process Pi:

• What properties does this solution satisfy?
– Satisfies progress

– Does not satisfy mutual exclusion

Algorithm 2b

do

 while (flag[j] == true);

 flag[i] = true;

 critical section

 flag[i] = false

 remainder section
while (true)

11

Algorithm 3

• Combine shared variables of algorithms 1 and 2

• Process Pi:

• Meets all three requirements; solves the critical-section problem for two
processes.

do

 flag[i] = true;

 turn = j

 while ((flag[j] == true) && (turn == j)) ;

 critical section

 flag[i] = false

 remainder section
while (true)

7

12

Bakery Algorithm (Lamport)

• Critical Section for n processes
– Before entering its critical section, process receives a number. Holder of

the smallest number enters the critical section.

– If processes Pi and Pj receive the same number, then if i < j, then Pi is
served first; else Pj is served first.

– The number selection algorithm guarantees that numbers are generated in
increasing order of enumeration; I.e.

1, 2, 3, 3, 3, 4, 4, 5, 6

– Notation: < is defined as lexicographical order (ticket #, pid)
• (a, b) < (c, d) if a < c or if a == c and b < d

• max(a0, …, an-1) is a number, k, such that k ≥ aid for i = 0, …, n-1

– Shared data
• boolean choosing[n];

• int number[n];

• initialized to false and 0, respectively

13

Bakery Algorithm (Cont.)

do

 choosing[i] = true;

 number[i] = max(number[0], …, number[n-1]) + 1;

 choosing[i] = false;

 for (j = 0; j < n; j++) {

 while (choosing[j] == true) ;

 while ((number[j] != 0) &&

 ((number[j], j) < (number[i], i))) ;

 }

 critical section

 number[i] = 0;

 remainder section
while (true)

8

14

Synchronization Hardware

• Test and modify the content of a word atomically.
boolean TestAndSet (boolean * target)
{
 boolean oldval;

 oldval = *target;
 *target = true;

 return oldval;
}

15

Mutual Exclusion with TestAndSet

• Shared data
– boolean lock;

– initially false

• Process Pi:

do

 while (TestAndSet(&lock) == true) ;

 critical section

 lock = false;

 remainder section
while (true)

9

16

Semaphore

• Synchronization tool that does not require busy waiting

• Semaphore S - integer variable with additional semantics

• Can only be accessed via two atomic operations:
– wait(S):

• while (S <= 0) ;

• S = S - 1;

– signal(S);
• S = S + 1;

17

do

 wait (mutex) ;

 critical section

 signal (mutex);

 remainder section
while (true)

Example: Critical Section for n Processes

Shared data
semaphore mutex;

initially mutex = 1;
Process Pi:

10

18

Semaphore Implementation

• Define a semaphore as a record
typedef struct {

 int value;

 processList_t L;

} semaphore, *semptr;

• Assume help from the OS with two simple operations:
– block suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked process P.

19

Implementation (Cont.)

• Semaphore operations now defined as:
– wait(semptr S):

S->value = S->value - 1;

if (S->value < 0) {
add this process to S->L;

block;

}

– signal(semptr S):
S->value = S->value + 1;

if (S->value <= 0) {
remove a process P from S->L;

wakeup(P)

}

11

20

Semaphore for General Synchronization

• Desire to execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0

• Code:

Pi

.

.
A
signal(flag)

Pj

.

.

.
wait(flag)
B

21

Deadlock and Starvation

• Deadlock — two or more processes are waiting indefinitely for an event
that can be caused by only one of the waiting processes.

• Let S and Q be two semaphores initialized to 1

• Starvation — indefinite blocking
A process may never be removed from the semaphore queue in which it is
suspended.

P0

wait(S);
wait(Q);

‡

signal(S);
signal(Q);

P1

wait(Q);
wait(S);

‡

signal(Q);
signal(S);

12

22

Types of Semaphores

• Counting semaphore — integer value can range over an unrestricted
domain.

• Binary semaphore — integer value can range only between 0 and 1; can be
simpler to implement.

• Can implement a counting semaphore S as a binary semaphore
• Data Structures:

– binarySemaphore S1;

– binarySemaphore S2;

– binarySemaphore S3;

– int C;

• Initialization:
– S1->value = S3->value = 1

– S2->value = 0

– C = initial value of semaphore

23

Implementing a Binary Semaphore

• wait operation

• signal operation

wait(S3);
wait(S1);
C = C-1;
if (C < 0) {
 signal(S1);
 wait(S2);
} else {
 signal(S1);
}
signal(S3);

wait(S1);
C = C + 1;
if (C <= 0) {
 signal(S2);
}
signal(S1);

13

24

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining Philosophers Problem

25

Bounded-Buffer Problem

• Shared Data:
– typedef struct { … } item_t;

– item_t * buffer[N];

– sem full, empty, mutex;

– item_t * nextp, * nextc;

– full->value = 0; empty->value = N; mutex->value = 1;

14

26

Producer and Consumer

do {
…

produce an item in nextp;

…

wait(empty);

wait(mutex);

…

add nextp to buffer

…

signal(mutex);

signal(full);

} while (true);

do {
wait(full);
wait(mutex);
…
remove an item from buffer to
nextc
…
signal(mutex);
signal(empty);
…
produce an item in nextp;
…

} while (true);

Producer Consumer

27

Readers-Writers Problem

• Shared Data
– sem mutex (= 1); sem wrt (= 1);

– int readcount (=0);

wait(wrt);
…
writing is performed
…
signal(wrt);

wait(mutex);
readcount = readcount + 1;
if (readcount == 1) {

wait(wrt);
}

signal(mutex);
…
reading is performed
…
wait(mutex);

readcount = readcount - 1;
if (readcount == 0) {

signal(wrt);
}

signal(mutex);

Writer Process

Reader Process

15

28

Dining-Philosophers Problem

sem chopstick[5]; (all = 1)

29

Dining-Philosophers (Cont.)

do {
wait(chopstick[i]);
wait(chopstick[(i + 1) % 5]);
…
eat
…
signal(chopstick[i]);

signal(chopstick[(i + 1) % 5]);
…
think
…

} while (true);

16

30

Monitors

• High-level synchronization construct that allows the safe
sharing of an abstract data type among concurrent
processes.

class MonitorADT {
 private int sharedInt;
 private boolean writeable = true;

 public synchronized void setSharedInt (int val)
 {
 while (!writeable) {
 wait();
 }

 sharedInt = val;
 writeable = false;
 notify();
 }

 public synchronized int getSharedInt (void)
 {
 while (writeable) {
 wait();
 }

 writeable = true;
 notify();
 return sharedInt;
 }

31

Monitors (Cont.)

• Generalization of wait/notify within a monitor — condition
variables.
– condition x, y;

• Condition variables can only be used with the operations
wait and signal.
– The operation x.wait

means that the thread invoking this operation is suspended until
another process invokes
x.signal

– The x.signal operation resumes exactly one suspended process. If
no process is suspended, then the signal operation has no effect.

17

32

Dining Philosophers Example

class DiningPhilosophers {

typedef enum {Thinking, Hungry, Eating} PhilosoperState;
private PhilosopherState state[5];
private condition self[5];

public synchronized void pickup (int i)
{

state[i] = Hungry;
test (i);
if (state[i] != Eating) {

self[i].wait();
}

}

public synchronized void putdown (int i)
{

state[i] = Thinking;
test ((i+4) % 5);
test ((i+1) % 5);

}

private void test (int k)
{

if ((state[(k+4) % 5] != Eating) &&
(state[k] == Hungry) &&
(state[(k+1) % 5) != Eating)) {
state[k] = Eating;
self[k].signal();

}
}

}

33

Monitor Implementation Using Semaphores

• Variables

• Replace external procedure F with:

• Mutual Exclusion within a monitor is ensured.

semaphore mutex; (init = 1)
semaphore next; (init = 0)
int nextCount; (init = 0)

wait(mutex);
…
body of F
…

if (nextCount > 0) {
signal(next);

} else {
signal(mutex);

}

18

34

Implementing Condition Variables

• For each condition variable x, define:
semaphore xSemaphore; (init = 0)
int xCount; (init = 0)

xCount = xCount + 1;
if (nextCount > 0) {

signal(next);
} else {

signal(mutex);
}
wait(xSemaphore);
xCount = xCount - 1;

if (xCount > 0) {
nextCount = nextCount + 1;
signal(xSemaphore);
wait(next);
nextCount = nextCount - 1;

}

x.wait x.signal

35

Monitor Usage

• User processes must always make their calls on the
monitor in a correct sequence.

• Still must ensure that an uncooperative process does not
ignore the mutual-exclusion gateway provided by the
monitor, and try to access the shared resource directly,
without using the access protocols.

19

36

Windows NT Operating System

• Implements a variety of synchronization primitives to
support multitasking, multithreading, and multiprocessing.

• Different set of mechanisms within the Operating System
and for User Processes.

• Objects of different scope are appropriate for different
levels of sharing.

