
1

The OS 502 Project

CS 502

Spring 99

WPI MetroWest/Southboro Campus

2

OS 502 Project Outline

• Architecture of the Simulator Environment

• Z502 Hardware Organization and Architecture

• Generic Operating System Structure

• The Test Suite
– Phase 1 Tests

– Phase 2 Tests

2

3

Simulator Environment

Native Hardware Platform
(IA-32, PA-RISC, Sun Workstation, etc.)

Native Operating System
(Windows NT, HP-UX, Solaris, etc.)

Z502 Hardware Simulator
(z502.c)

OS 502 Operating System
(base.c, scheduler_printer.c)

OS 502 Test Suite (test.c)

test0 test1a test1b test1x test2a test2b ...

All elements inside the heavy box are in
a single process, running a single thread
of execution.

All I/O devices of the Z502 are simulated
entities. This includes the timer device
and the disk devices.

Try to treat the Z502 Hardware Simulator
as a “black box” and use the Z502 architecture
specification instead.

4

Z502 Architecture

• Dual-Mode architecture
– User mode (see A.4)

• High level language, augmented with
– Z502 General Purpose Registers

– Macros for simplifying reentrant programs

– Systems Calls, provided as macros (do not rewrite!)

• Z502 “Programs” are written as C functions taking a void parameter and
having a void return.

• Example Program: void test0(void)
{

SELECT_STEP
{

STEP(0)
printf(“This is test 0”);
GET_TIME_OF_DAY(&Z502_REG_1);

STEP(1)
printf(“Time of day is %d\n”, Z502_REG_1);
TERMINATE_PROCESS(-1, &Z502_REG_9);

STEP(2)
printf(“Error: Test should be terminated, but isn’t\n”);
break;

}
}

3

5

Z502 Architecture (cont.)

– User Mode (cont.)
• Address space for user programs is divided into

– C code “program” memory for instructions and for local variables. This, for all
intents and purposes, is not constrained in size.

– User “data” memory, referenced through a virtual address space, and called
MEMORY, and accessed from user space through the MEM_XXXX macros. No
programs in phase 1 access this user memory.

– Kernel Mode
• Instruction set includes C language instructions, plus

– access to all the Z502 registers

– access to Z502 physical memory (MEMORY)

– access to the privileged instructions of the Z502 instruction set

• I/O primitives

• memory primitives

• context switching primitives

– These are all available through provided macros

6

Z502 Registers and Vectors

Name Bits Usage

Z502_REG_ARG1 …
Z502_REG_ARG6

32 For passing system call parameter values

Z502_REG_1 …
Z502_REG_9

32 General purpose

Z502_REG_PROGRAM_COUNTER 32 Points to next location in user program

Z502_REG_PAGE_TABLE_ADDR 32 Points to page table

Z502_REG_PAGE_TABLE_LENGTH 32 Length of page table in 32 bit entries

Z502_REG_CURRENT_CONTEXT 32 Handle for current context

Z502_REG_INTERRUPT_MASK 32 Interrupt enable/disable

TO_VECTOR 3 x 32 Addresses of interruption handlers

STAT_VECTOR 2 x N
x 32

Exception statuses

4

7

Interruption Handling by the Z502

• Interruption Sources
– Interrupts

• TIMER_INTERRUPT from the delay timer

• DISK_INTERRUPT from disk 1, 2, ...

– Faults
• INVALID_MEMORY fault

• CPU_ERROR fault

• PRIVILEGED_INSTRUCTION fault

– Traps
• SOFTWARE_TRAP for each system call

– TO_VECTOR contains an address for each category of
interruption source.

8

Interruption Handling

• In os_init (the OS boot code), the OS sets values for each
of the entries in TO_VECTOR.

• On the Z502, there is a total enumeration of all
interruptions (exceptions)

• SOFTWARE_TRAP

• CPU_ERROR

• INVALID_MEMORY

• PRIVILEGED_INSTRUCTION

• TIMER_INTERRUPT

• DISK_INTERRUPT

• DISK_INTERRUPT + 1

• …

• LARGEST_STAT_VECTOR_INDEX

5

9

Z502 Hardware Actions on Interruption

• Let the interruption number (called exception in
Appendix A) be x.

• User registers are saved in Z502 Hardware Context

• Hardware sets
– STAT_VECTOR[SV_ACTIVE][x] = TRUE

– STAT_VECTOR[SV_VALUE][x] = interruption specific info

• Execution mode is set to kernel

• Hardware begins execution at Interrupt, Fault, or Trap
entry point as defined by TO_VECTOR

• Note that INTERRUPT_MASK is not set to TRUE. The
operating system must do this if that is the desired mode of
operation.

10

OS Responsibilities on an Interruption

• On Entry
– Mask interrupts (if desired)

– Clear the Interruption Source
• set STAT_VECTOR[SV_ACTIVE][x] to FALSE

– Determine the cause of the interruption and process accordingly

• On Exit
– Unmask interrupts (if not already done).

– For Interrupts, simply return

– For traps and faults, ultimately exit the OS by performing a context
switch (even if that switches back to the original process). This
operation restores the user registers from the Z502 Hardware
Context and sets the execution mode back to user.

6

11

Interruption Causes

• Use STAT_VECTOR[SV_VALUE][x] to determine an
interruption cause and influence processing:
– For SOFTWARE_TRAP, value is the system call number. Use

this to enter a switch statement to process system calls.

– For CPU_ERROR, value is given by error codes (see table in
Appendix A)

– For INVALID_MEMORY, value is virtual memory page causing
the fault

– For PRIVILEGED_INSTRUCTION, value is 0

– For all interrupts (timer and disk), value is given by error codes
(where one of the possibilities is ERR_SUCCESS)

12

Z502 Hardware Context

• The context is the state of the executing CPU, essentially
its registers.

• The Hardware context is essentially a register set, plus an
entry address.

• The OS only deals with the handle to a context. Typically
this is stored in the process control block.

• Z502 Operations for manipulating contexts
– Z502_MAKE_CONTEXT(handle, start address, kernel flag)

– Z502_DESTROY_CONTEXT(handle)

– Z502_SWITCH_CONTEXT(save/destroy flag, handle)

7

13

Operating System Structure

• Organize into functional areas
– What are the functional areas of the Operating System?

– What are the abstract data types required?

– Class participation, putting together an OS structure…

• Next steps (Milestone 3)
– Strawman functional spec for each module defined in the block

diagram.

– For each module
• set of interrelations with other OS modules

• portions of the Z502 interface being invoked by the module

• Set of system calls realized within the module

– For system calls
• Categorization by module

• Attributes: blocking vs. non-blocking, save/destroy context

14

Milestone 4: test0

• Code given previously. Nearly the simplest user program
possible.

• Requirements
– Core OS

• os_init
– TO_VECTOR

• trap_handler
– System call switch

– Process Management module
• os_create

• os_terminate

– Timer module
• os_get_time

8

15

The Test Suite: Phase 1

• Test1a: Add SLEEP, requires timer multiplexing and
interrupt handling, infrastructure for multiple processes.

• Test1b: Interface tests to CREATE_PROCESS

• Test1c: Multiple instances of test1a; demonstration of
FCFS scheduling (by using same priorities)

• Test1d: Likewise for different priorities

• Test1e: Suspend/Resume interface test

• Test1f: Suspend/Resume on real scheduling

• Test1g: Change Priority interface test

• Test1h: Change Priority on real scheduling

• Test1k: Misc. error tests

