
1

Virtual Memory

CS 502

Spring 99

WPI MetroWest/Southboro Campus

3/8/99 1

Virtual Memory Outline

• Background

• Demand Paging

• Performance of Demand Paging

• Page Replacement

• Page-Replacement Algorithms

• Allocation of Frames

• Thrashing

• Other Considerations

• Demand Segmentation

2

3/8/99 2

Background

• Virtual memory -- separation of user logical
memory from physical memory.
– Only part of the program needs to be in memory for

execution. Explain.

– Logical address space can therefore be much larger
than physical address space.

– Need to allow pages to be swapped in and out.

• Virtual memory can be implemented via:
– Demand paging

– Demand segmentation

3/8/99 3

Demand Paging

• Bring a page into memory only when it is needed.
– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed ⇒ reference to it
– invalid reference ⇒ abort

– not-in-memory ⇒ bring to memory

3

3/8/99 4

Valid–Invalid Bit

• With each page table entry a valid–invalid bit is associated
(1 ⇒ in-memory, 0 ⇒ not-in-memory)

• Initially valid–invalid bit is set to 0 on all entries.

• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page table entry is 0
⇒ page fault.

1

Valid–Invalid Bit Frame

0

1

1

0

1

Page Table

3/8/99 5

Page Fault

• If there is ever a reference to a page, first reference will
trap to OS ⇒ page fault.

• OS looks at another table to decide:
– Invalid reference ⇒ abort.

– Just not in memory.

• Get empty frame.

• Swap page into frame.

• Reset tables, validation bit = 1.

• Restart instruction:
– block move

– auto increment/decrement location

4

3/8/99 6

What happens if there is no free frame?

• Page replacement – find some page in memory, but not
really in use, swap it out.
– algorithm

– performance – want an algorithm which will result in minimum
number of page faults.

• Same page may be brought into memory several times.

3/8/99 7

Performance of Demand Paging

• Page Fault Rate 0 ≤ p ≤ 1.0

• if p = 0, no page faults

• if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 – p) ⋅ ma

+ p ⋅ (page_fault_overhead +

[swap_page_out] +

swap_page_in +

restart_overhead)

5

3/8/99 8

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been
modified and therefore needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 µsec

EAT = (1 – p) 1 + p (15000)

3/8/99 9

Page Replacement

• Prevent over-allocation of memory by modifying
page-fault service routine to include page replacement.

• Use modify (dirty) bit to reduce overhead of page transfers
– only modified pages are written to disk.

• Page replacement completes separation between logical
memory and physical memory – large virtual memory can
be provided on a smaller physical memory.

6

3/8/99 10

Page Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular string of
memory references (reference string) and computing the
number of page faults on that string.
– Evaluation is “workload” specific

• In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

3/8/99 11

First–In–First–Out (FIFO) Algorithm

• Three Frames

• Four Frames

• FIFO Replacement -- Belady's Anomaly
– more frames does not imply less page faults

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

7

3/8/99 12

Optimal Algorithm

• Replace page that will not be used for longest period of
time.

• Four frames

• How do you know this?

• Used for measuring how well your algorithm performs.

1 2 3 4 1 2 5 1 2 3 4 5

3/8/99 13

Least Recently Used (LRU) Algorithm

• Four Frames

• Counter implementation
– Every page entry has a counter; every time page is referenced

through this entry, copy the clock into the counter.

– When a page needs to be changed, look at the counters to
determine which are to change

1 2 3 4 1 2 5 1 2 3 4 5

8

3/8/99 14

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a
double link form:
– Page referenced:

• move it to the top

• requires 6 pointers to be changed

– No search for replacement

3/8/99 15

LRU Approximation Algorithms

• Reference bit
– With each page associate a bit, initially = 0.

– When page is referenced bit set to 1 (by hardware).

– Replace the one which is 0 (if one exists). We do not know the
order, however.

• Second chance
– Need reference bit.

– Clock replacement.

– If page to be replaced (in clock order) has reference bit = 1, then:
• set reference bit 0.

• leave page in memory.

• replace next page (in clock order), subject to same rules.

9

3/8/99 16

LRU Approximation (Cont.)

• Enhanced Second Chance – Consider the Reference Bit
and the Modify Bit as an ordered pair (r, m)
– (0, 0): neither recently used nor modified – best page to replace.

– (0, 1): not recently used, but modified – not quite as good, because
the page will need to be written out before replacement.

– (1, 0): recently used but clean – probably will be used again soon.

– (1, 1): recently used and modified – probably will be used again
soon, and write out will be needed before replacing it.

3/8/99 17

Counting Algorithms

• Keep a counter of the number of references that have been
made to each page.

• LFU Algorithm: replaces page with smallest count.

• MFU Algorithm: based on the argument that the page with
the smallest count was probably just brought in and has yet
to be used.

10

3/8/99 18

Allocation of Frames

• Each process needs minimum number of pages.

• Example: IBM 370 -- 6 pages to handle SS MOVE
instruction:
– Instruction is 6 bytes, might span 2 pages.

– 2 pages to handle from.

– 2 pages to handle to.

• Two major allocation schemes:
– fixed allocation

– priority allocation

3/8/99 19

Fixed Allocation

• Equal allocation -- e.g., If 100 frames and 5 processes, give
each 20 pages.

• Proportional allocation -- Allocate according to the size of
process.
– si = virtual memory size of process pi

– S = Σ si

– m = total number of frames

– ai = allocation for pi = (si / S) ⋅ m

11

3/8/99 20

Priority Allocation

• Use a proportional allocation scheme using priorities rather
than size.

• If process Pi generates a page fault,
– select for replacement one of its frames.

– select for replacement a frame from a process with lower priority
number.

3/8/99 21

Global vs. Local Allocation

• Global replacement – process selects a replacement frame
from the set of all frames; one process can take a frame
from another.

• Local replacement – each process selects from only its own
set of allocated frames.

12

3/8/99 22

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:
– low CPU utilization.

– operating system thinks that it needs to increase the degree of
multiprogramming.

– another process added to the system.

• Thrashing ≡ a process is busy swapping pages in and out.

3/8/99 23

Thrashing Diagram

• Why does paging work?

• Locality model
– Process migrates from one locality to another.

– Localities may overlap.

– Why does thrashing occur?
Σ size of locality > total memory size

Degree of Multiprogramming

C
PU

 U
ti

liz
at

io
n

Thrashing

13

3/8/99 24

Working Set Model

• Let ∆ ≡ working-set window ≡ a fixed number of page
references; Example: 10,000 instructions

• WSSi (working set of process Pi) = total number of pages
referenced in the most recent \Delta (varies in time)
– If ∆ too small will not encompass entire locality.

– If ∆ too large will encompass several localities.

– If ∆ = ∞ will encompass entire program.

• D = Σ WSSi ≡ total demand frames

• If D > m ⇒ thrashing.

• Policy: if D > m, then suspend one of the processes.

3/8/99 25

Keeping Track of the Working Set

• Approximate with interval timer + a reference bit

• Example: ∆ = 10,000
– Timer interrupts after every 5000 time units.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the values of all
reference bits to 0.

– If one of the bits in memory = 1 ⇒ page in working set.

• Why is this not completely accurate?

• Improvement = 10 bits and interrupt every 1000 time units

14

3/8/99 26

Page–Fault Frequency Scheme

• Establish “acceptable” page-fault rate.
– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Number of Frames

P
a

ge
–F

a
ul

t
R

a
te

Upper
Bound

Lower
Bound

3/8/99 27

Other Considerations

• Prepaging

• Pool of Free Frames

• Page size selection
– fragmentation

– table size

– I/O overhead

– locality

• I/O interlock and addressing

15

3/8/99 28

Other Considerations (Cont.)

• Program structure
– Array A[1024,1024] of integer

– Each row is stored in one page

– One frame

– Program 1
 for j := 1 to 1024 do
 for i := 1 to 1024 do
 A[i; j] := 0;

– 1024 x 1024 page faults

– Program 2
 for j := 1 to 1024 do
 for i := 1 to 1024 do
 A[i; j] := 0;

– 1024 page faults

3/8/99 29

Demand Segmentation

• Used when insufficient hardware to implement demand
paging.

• OS/2 allocates memory in segments, which it keeps track
of through segment descriptors.

• Segment descriptor contains a valid bit to indicate whether
the segment is currently in memory.
– If segment is in main memory, access continues,

– If not in memory, segment fault.

