CS561

Solution to View Maintenance Homework

This solution is to a large part based on Tim Sutherland’s writeup.

1. List at least 6 assumptions that the ECA algorithm is making about the environment and/or the problem it is tackling.

· Communication between the sources and the data warehouse is FIFO, i.e., using the first in first out principle so that the message we see first is also the message that got executed first on the sender side.

· We are in a distributed environment, where the systems communicate in an asynchronous manner and the source and the warehouse reside on different machines.

· All operations are atomic at source or at DW, that is, both systems have a local concurrency control mechanism.

· Actions always follow the order of S_up, W_up, S_qu, W_ans, that is, the system goes by a fixed protocol of interaction.

· The sources are only semi-cooperative, in the sense that they are properly responding to any queries send to them and they also submit any notifications indicating updates that occurred. However, the sources do not actively participate in the view maintenance process nor are even aware of it beyond these two operations.

· This is based on a single source, single view

· It is a relational model now; while OO or even XML model could be considered in the future.

· Duplicates are retained in Materialized Views

· This is based on a single source, single view

· Modifications are considered as Delete, Update pairs.

2. Explain briefly in a few sentences what the main problem is that this ECA algorithm is trying to solve, including the cause of this problem.

The ECA algorithm is a method for fixing the view maintenance problem that occurs due to the decoupling between base data and the view maintenance manager at the warehouse. This decoupling occurs so that base data systems do not have to be at all involved and hindered by other systems defining views over the base data. Rather they can asynchronously and autonomously commit any local updates at any time without having to wait for any kind of global commit involved the delta-effect of a source update to have been propagated to the data warehouse view. In the event that an object is changed in the base data, the view manager is notified and then can if needed request additional information from the base data in order to compute a final commit. The problem is that there is a high chance that by the time the request is received from the view, the base data has changed yet again, causing a discrepancy between the state of the data expected by the view maintainer and the actual base data it encounters.

3. Explain briefly in a few sentences what the key ideas and the intuition is of the ECA algorithm solution.

The key idea of the ECA algorithm is that it cannot rely on the state of the base information (as that continuously and autonomously being changed by the sources). Hence it must keep track of the updates received from the base and then filter out (compensate) any information that it knows will be duplicated or erroneously omitted in resulting queries. By subtracting out (or adding in) results it knows it will (not) get in future queries, it will create an accurate end result for the view.

4. Below, this problem contains several exercises to make sure you deeply understand the basics of view maintenance in distributed environments, and in particular the BASIC view maintenance algorithm and the ECA algorithm.
Show your detailed steps, queries, intermediate data structures, messages, view content, and so on after each step. Describe when and how often the view is actually being refreshed and if the view content is correct or not.

Initial database states:

 R1 (W , X) R2 (X , Y) R3(Y , Z)

 1 2 2 3 - -

Updates:

U1 = insert(2,2) into R1

U2 = insert(3,4) into R3

U3 = insert(3,2) into R1

· 4(a). Show a detailed walk-through of what the BASIC ALGORITHM given as algorithm 5.1 in section 5.1 of the ECA paper would compute for the above. Do show the queries, the view, and when it is being refreshed. Make all the same assumptions as in the paper. In addition, assume the three updates U1, U2, and U3 all happen very rapidly in time, and all are committed at the data source before the first maintenance query ever arrives back to the view manager.

For the following problem, assume the following acronyms:

WH – Warehouse

SRC- Data Source

UQS- Unanswered Query Set

MV- Materialized View

a)

1. U1 is performed at the SRC

2. U1 is sent to the WH

3. U2 is performed at the SRC

4. U2 is sent to the WH

5. U3 is performed at the SRC

6. U3 is sent to the WH

7. WH receives U1, sends query Q1 = (w ([2,2] join r2 join r3)

8. WH receives U2, sends query Q2 = (w (r1 join r2 join [3,4])

9. WH receives U3, sends query Q3 = (w ([3,2] join r2 join r3)

10. SRC receives Q1 returns A1 = ([2])

11. SRC receives Q2 returns A2 = ([1],[2],[3])

12. SRC receives Q3 returns A3 = ([3])

13. WH receives A1, MV = MV + A1 = ([2])

14. WH receives A2, MV = MV + A2 = ([2]) + ([1],[2],[3]) = ([2],[1],[2],[3])

15. WH receives A3, MV = MV + A3 = ([3]) + ([2],[1],[2],[3]) = ([3],[2],[1],[2],[3])
16. This is inconsistent!!!
b) Now show a detailed walk-through of what the ECA ALGORITHM given as algorithm 5.2 in section 5.1 of the ECA paper would compute for the above. Make all the same assumptions as in the paper. In addition, assume here at the three updates U1, U2, and U3 all happen very rapidly, and all are committed at the data source before the first maintenance query ever arrives.

1. U1 is performed at the SRC

2. U1 is sent to the WH

3. U2 is performed at the SRC

4. U2 is sent to the WH

5. U3 is performed at the SRC

6. U3 is sent to the WH

7. WH receives U1, sends query Q1 = V<U1> = (w ([2,2] join r2 join r3), UQS={Q1}

8. WH receives U2, sends query Q2 = V<U2> - Q1<U2>

 = (w(r1 join r2 join [3,4]) - (w([2,2] join r2 join [3,4]), UQS = {Q1,Q2}

9. WH receives U3, sends query Q3 = V<U3> - Q1<U3> - Q2<U3> = (w([3,2] join r2 join r3) - (w([3,2] join r2 join [3,4]). UQS = {Q1,Q2,Q3}

NOTE: look at page 321 on why Q1(U3) = null.

10. SRC receives Q1 returns A1 = ([2])

11. SRC receives Q2 returns A2 = ([1],[3])

12. SRC receives Q3 returns A3 = null

13. WH receives A1, COLLECT = null + ([2]) = ([2]), UQS = {Q2, Q3}

14. WH receives A2, COLLECT = ([2]) + ([1],[3]) = ([2],[1],[3]), UQS = {Q3}

15. WH receives A3, COLLECT = ([2],[1],[3]) + null = ([2],[1],[3]), UQS = null

16. Since UQS = null, MV = null + COLLECT = ([1],[2],[3])

17. This is consistent!!!
c) Now, repeat problem 4(a) above for the BASIC algorithm. However, assume that first U1, U2 are committed at the source close in time. After hearing about these two updates, the view manager receives the query answer to the first maintenance query Q1. And, only thereafter she gets notified that a third update, U3, happened at the source.

 Note that for steps 8. and 9. below different orders would be possible. Namely, here we assume that U3 happens at the source before evaluation of Q2(U2) too place. This order among U3 versus Q2(U2) had not been specified above in the problem description.

1. U1 is performed at the SRC

2. U1 is sent to the WH

3. U2 is performed at the SRC

4. U2 is sent to the WH

5. WH receives U1, sends query Q1 = (w ([2,2] join r2 join r3)

6. WH receives U2, sends query Q2 = (w (r1 join r2 join [3,4])

7. SRC receives Q1 returns A1 = ([2])

8. WH receives A1, MV = MV + A1 = ([2])

9. U3 is performed at the SRC

10. U3 is sent to the WH

11. WH receives U3, sends query Q3 = (w ([3,2] join r2 join r3)

12. SRC receives Q2 returns A2 = ([1],[2],[3])

13. SRC receives Q3 returns A3 = ([3])

14. WH receives A2, MV = MV + A2 = ([2]) + ([1],[2],[3]) = ([2],[1],[2],[3])

15. WH receives A3, MV = MV + A3 = ([3]) + ([2],[1],[2],[3]) = ([3],[2],[1],[2],[3])
16. This is inconsistent!!!

d) Now, repeat problem 4(a) above for the ECS ALGORITHM. However, assume that first U1, U2 are committed at the source close in time. After hearing about these two updates, the view manager receives the query answer to the first maintenance query Q1. And, only thereafter she gets notified that a third update, U3, happened at the source.

1. U1 is performed at the SRC

2. U1 is sent to the WH

3. U2 is performed at the SRC

4. U2 is sent to the WH

5. WH receives U1, sends query Q1 = V<U1> = (w ([2,2] join r2 join r3),
 UQS={Q1}

6. WH receives U2, sends query Q2 = V<U2> - Q1<U2>

 = (w(r1 join r2 join [3,4]) - (w([2,2] join r2 join [3,4]),

 UQS = {Q1,Q2}

7. SRC receives Q1 returns A1 = ([2])

8. WH receives A1, COLLECT = null + ([2]) = ([2]),

 UQS = {Q2}

9. U3 is performed at the SRC

10. U3 is sent to the WH

11. WH receives U3, sends query Q3 = V<U3> - Q2<U3> = (w([3,2] join r2 join r3) - (w([3,2] join r2 join [3,4]),

 UQS = {Q2,Q3}

12. SRC receives Q2 returns A2 = ([1],[3])

13. WH receives A2, COLLECT = ([2]) + ([1],[3]) = ([2],[1],[3]),

 UQS = {Q3}

14. SRC receives Q3 returns A3 = null

15. WH receives A3, COLLECT = ([2],[1],[3]) + null = ([2],[1],[3]),

 UQS = null

16. Since UQS = null, MV = null + COLLECT = ([1],[2],[3])

17. This is consistent!!!
