
Processing Sliding Window Multi-Joins in
Continuous Queries over Data Streams

Paper By: Lukasz Golab
M. Tamer Ozsu

CS 561 Presentation

WPI 11th March, 2004

Students: Malav shah

Professor: Elke Rundenstainer

VLDB 2003, Berlin, Germany.

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Introduction
What is Data Streams?
A real-time, continuous, ordered (explicitly by timestamps or
implicitly by arrival time) sequence of items.

How can you query such type of
streams?
running a query continually over a period of time and
generating new results.

continuous, standing, or persistent queries.

Applications
Sensor Data Processing

Internet Traffic analysis

Financial Ticker

Analysis of various transaction logs
such as Web server logs and telephone
records

Issues

Unbounded streams may not wholly
stored in bounded memory.

New items are often more accurate or
more relevant than older items.

Blocking operators may not be useful as
they must consume entire input before
any results produced.

Common Solution

Define Sliding-Window
Restrict the range of continuous queries to a sliding-
window that contains the last T items or those items that
contains last t time units.

Count Based Window (Sequence Based)

Time Based Window (Timestamps Based)

Issues: using sliding window

Re-Execution Strategies
Eager re-execution strategy
Lazy re-execution strategy

Tuple Invalidation Procedures
Eager expiration
Lazy expiration

Example of Eager Re-execution
and Expiration

Insert tuple

Inserted tuple

Invalidate tuple

Example of Eager Re-execution
and Expiration

Invalidated tuple

Example of Lazy Expiration

Insert tuple

Inserted tuple

Example of Lazy Expiration

Insert tuple

Example of Lazy Expiration

Invalidate tuple

Invalidate tuple

Inserted tuple

Example of Lazy Expiration

Invalidated tuple

Invalidated tuple

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Problem Description

N Data Streams

N corresponding sliding window

Continuously evaluate exact join of
all N window

Assumption

Each stream is consist of relational
tuple with schema <timestamp ts,
attributes attr>
All windows fit into main memory
All query plans use extreme right-
deep join trees that do not
materialize any intermediate results
Do not permit time-lagged windows

Explanation of symbols

Convention for Join Ordering

TOP-DOWN Approach

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Binary Incremental NLJ

Proposed by Kang

Strategy
Let S1 and S2 be two sliding windows to be joined. For each
newly arrived S1-tuple, we scan S2 and return all matching
tuples. We then insert the new tuple into S1 and in-validate
expired tuples. We follow the same procedure for each newly
arrived S2-tuple.

Example

Output tuple

Insert tuple

Probe

A B

Example

Invalidate tuple

Inserted tuple

A B

Example

Invalidated tuple

A B

Naïve Multi-way NLJ
Extension to Binary Incremental
NLJ
Strategy
For each newly arrived tuple k, we execute the join
sequence in the order prescribed by the query plan,
but we only include k in the join process (not the
entire window that contain k).

In this algorithm we invalidate the expired tuples first

Extending Naïve Multi-way NLJ to support lazy re-evaluation
is easy. Re-execute the join every T time units, first joining
new s1-tuples with other sliding windows, then new s2-tuples
and so on. (must ensure not to include expired tuples in result)

Example

Insert tuple

S1

Invalidate tupleInvalidate tuple

S2 S3

Insert tuple

C

Example

A B
Probe

Output tuple

Join

Output tuple

Output tuple

A B

Example Output tuple
Invalidate tuple

Inserted tuple

CA B

A B

Example

CA B

A B

Improved eager Multi-way NLJ

Problems with Naïve eager Multi-
way Join

When a new tuple arrives at the stream which is not first in
the order list then we compute the join for both second and
third stream for all tuples in first ordered stream. This
results in unnecessary work when a new tuple arrives at
stream which is not first in the join tree.

Why not select only those tuples from s1 which joins with
s3-tuple, and make scan of s2 for only those tuples.

In worst case when all tuples in s1 joins with newly arrived
tuple, we’ve to scan s2 for every tuple in s1, otherwise it’ll
be less.

Algorithm for eager Multi-way
Join

Lazy Multi-Way Join

Straightforward adaptation to eager
multi-way join

Process in the outer most for-loop all the new tuples
which have been arrived since last re-execution

Algorithm

General Lazy Multi-Way Join
We can make the lazy multi-way join more
general if newly arrived tuples are not restricted
to the outer-most for loop.
Accepts arbitrary join order.
Algorithm

Multi-Way Hash Join
We scan only one hash bucket instead of the
entire window at each for loop.
Algorithm
Notation: B(i,k) = hi(k.attr) for Ith window

Extension to Count-Based
Windows

Eager expiration is straightforward:
Implement window(or hash bucket) as circular arrays
We can perform insertion and invalidation in one step
by overwriting oldest tuple

Lazy expiration is interesting:
Implement circular counter and assign positions to
each element in sliding window(call them cnt)
When probing for tuples to join with a new tuple k,
instead of comparing timestamps, we ensure that
each tuples counter cnt has not expired at time k.ts.
To do this, for each sliding window we find counter
with the largest timestamps not exceeding k.ts and
subtract window length from this counter (call it tmp)
and ensure that we join only those tuples with
counter greater than tmp.

Algorithm

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Cost Analysis
Insertion and Expiration cost

All NLJ based algorithms incur a constant insertion cost
per tuple: a new tuple is simply appended to its window
In hash based algorithm requires more work: need to
compute hash function and add tuple in hash table
(insertion cost slightly higher)
Actual insertion and expiration costs are implementation-
dependent
If invalidation is too frequent, some sliding window may
not contain any state tuples, but we’ll still pay the cost to
access it (same case with hash joins)
Very frequent expiration is too costly, especially in hash
joins.

Join Processing Cost
Used per-unit-time cost model,
developed by kang

When estimating join sizes,
standard assumptions regarding
containment of value sets and
uniform distribution of attribute
values are considered

Comparison between Naïve and
Proposed Multi-way Joins.

Given equivalent ordering
All window has same window
size, all streams has same arrival
rate, each window has same
distinct value.

Proposed multi-way scales better
than Naïve Multi-way Joins.

Comparison between different
lazy multi-way join algorithms

Lazy does not
perform well some

time

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Effect of Join Ordering

Eager re-execution
If each window has same number of distinct values,
then it is sensible to globally order the joins in
ascending order of the window sizes (in tuples), or
average hash bucket sizes

In general, it is sensible (but not optimal always)
heuristic is to assemble the joins in descending order
of the binary join selectivities, leaving as little work as
possible for inner for-loops

We define a join predicate p1 to be more selective
then p2, if p1 produces small result set then p1.

Example
For the example given,
the results are as
follows
For order s1,s2,s3,s4
processing time is
16000
S2,s1,s3,s4 has cost
of 19600
Worst cost plan is
90000.

Example when two streams
faster

For the example given,
the results are as
follows
For order s1,s2,s3,s4
processing time68200
S2,s1,s3,s4 has cost
of 79000
S3,s1,s4,s2 has cost
of 47977 (optimal)
So it’s not the always
case that moving all
faster streams upward
is optimal

Ordering heuristics for Lazy Re-
evaluation

Recall that lazy multi-way join is as efficient as
general multi-way join for small T.
If this is the case then we may use same
ordering heuristics as algorithm Lazy Multi-way
Join is a straightforward extension of its eager
version.
General Multi-way Join is more efficient if a good
join-ordering is chosen
General Multi-way join chooses join ordering
arbitrarily depending on the origin of the new
tuples that are being processed

Ordering heuristics for Multi-
way Hash Join

If each hash table has same number of buckets,
the ordering problem is same as NLJ. Why?

Hash join so configured operates in nested-loop
fashion like NLJ, except in each loop only one
hash bucket is scanned instead of entire
window.

Join ordering in other scenarios
Hybrid Hash-NLJ: a simple heuristic is to place
all the windows that contain hash indices in the
inner for-loop.
Expensive Predicates: Those may be ordered
near the top of the index tree.
Joins on different attributes: we cannot
arbitrarily re-order the join tree. It may still be
efficient to place the window from which new
tuple arrived at the outer-most for-loop.
Fluctuating Stream arrival rates: If feasible, we
re-execute the ordering heuristic whenever
stream rates changes beyond some threshold,
or we can place the streams which expected to
change widely near the top.

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Experimental Setting
Build a simple prototype of algorithms using
SUN Microsystems JDK 1.3.1
Windows PC with 1.2 AMD Processor and 256
MB RAM
Implemented sliding windows and hash
buckets as singly linked list
All hash functions are simple modular division
by the number of hash buckets
Tuple schema <int ts, int attr>
Expiration does not delete the tuple, instead
java garbage collector do that task
Tuple generation is simple continuous for-loop
which generates tuples randomly from
specified distinct values

Validation of cost model and
Join ordering heuristics

Effect of query Re-Evaluation and
Expiration Frequencies on Processing Time

Eager expirations incurs cost of updating
linked list on every arrival of tuple, while lazy
expiration performs fewer operations, but
allows the window to grow between updates,
causing long Join evaluation time.
For both NLJ and hash join short expiration
intervals are preferred as cost of advancing
pointer is lower than processing larger
windows.
Very frequent expiration and re-evaluation are
inefficient.

Varying Hash Table Sizes

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Related Work
Couger: Distributed sensor processing inside
the sensor network
Aurora: Allows user to create query plans by
visually arranging query operators using boxes
TelegraphCQ: For adaptive query processing
STREAM: Addresses all aspects of data stream
management, also proposed (CQL)
Detar: uses combination of window and stream
summary
Babu and Widom uses stream constraints
Some related work towards Join processing:
XJoin, Hash-Join, Ripple Join, Multi-way XJoin
called MJoin.

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Conclusion
Presented and analyzed incremental, multi-way
join algorithms for sliding window over data
streams.

Using per-unit-time based model, developed a
join heuristic that finds a good join order
without iterating over entire search space

With experiments showed that hash-based
joins performs better than NLJs and also
discovered allocating more hash buckets to
larger windows is a promising strategy

Future Work
Goal is to develop a sliding window query
processor that is functional, efficient, and
scalable
Functionality: intended to design efficient
algorithms for other query operators as well.
Efficiency: low-overhead indices for indexing
window contents and also exploit constraints to
minimize state
Scalability: indexing query predicates, storing
materialized views, and returning approximate
answers if exact answers are too expensive to
compute

INDEX
Introduction
Problem Description
Sliding Window Join algorithms
Cost Analysis
Join Ordering Heuristics
Experimental Results
Related Work
Conclusion and Future Work

Thank You

Malav Shah

	Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams
	INDEX
	Introduction
	Applications
	Issues
	Common Solution
	Issues: using sliding window
	Example of Eager Re-execution and Expiration
	Example of Eager Re-execution and Expiration
	Example of Lazy Expiration
	Example of Lazy Expiration
	Example of Lazy Expiration
	Example of Lazy Expiration
	INDEX
	Problem Description
	Assumption
	Explanation of symbols
	Convention for Join Ordering
	INDEX
	Binary Incremental NLJ
	Example
	Example
	Example
	Naïve Multi-way NLJ
	Example
	Example
	Example
	Example
	Improved eager Multi-way NLJ
	Algorithm for eager Multi-way Join
	Lazy Multi-Way Join
	General Lazy Multi-Way Join
	Multi-Way Hash Join
	Extension to Count-Based Windows
	Algorithm
	INDEX
	Cost Analysis
	Join Processing Cost
	Comparison between Naïve and Proposed Multi-way Joins.
	Comparison between different lazy multi-way join algorithms
	INDEX
	Effect of Join Ordering
	Example
	Example when two streams faster
	Ordering heuristics for Lazy Re-evaluation
	Ordering heuristics for Multi-way Hash Join
	Join ordering in other scenarios
	INDEX
	Experimental Setting
	Validation of cost model and Join ordering heuristics
	Effect of query Re-Evaluation and Expiration Frequencies on Processing Time
	Varying Hash Table Sizes
	INDEX
	Related Work
	INDEX
	Conclusion
	Future Work
	INDEX
	Thank You

