CS561 Course Project Final Report

By Bradley Momberger & Mingzhu Wei

Instructor: Elke A. Rundensteiner

26. April 2005

Background

The code base for the CAPE stream processing system at WPI is currently in a phase of experiment and development. There is a great deal of potential to make CAPE and Distributed CAPE (D-CAPE) an efficient, robust, and fully featured system. In keeping with the interests of Bradley Momberger with respect to increasing the robustness of the D-CAPE system, we propose a preliminary set of features for D-CAPE which combined allow for the distribution of individual operators and their states across multiple machines simultaneously. This process uses the "candle flame" approach to arrive at complete result sets over these operators.

The CAPE system developed out of a need for a powerful and flexible reference implementation of stream query processing concepts. Because of its flexibility, CAPE has already absorbed a number of newer concepts in stream processing, including distributed processing, dynamic constraint manipulation, sliding windows, and operator state partitioning.

This flexibility additionally means that CAPE is an ideal system to try out new or untested concepts in stream query processing. One such concept is the replication style of operator state partitioning proposed by Bradley Momberger (currently under review for acceptance as a thesis). In replication-style, or "candle flame" partitioning, tuples which are input to an operator with partitioned states are sent to each machine which holds a partition, instead of first determining which partition or partitions may achieve positive results with the tuple, or which partition may store a copy of the tuple. We hope to take advantage of the existing code base of D-CAPE and the relative simplicity of the proposed extensions, in order to aid ourselves in the implementation of these features.

Introduction to the project

Our project is based on the work of CAPE group. The main idea of the project is put forward by Bradley in his thesis proposal (we will describe later). Instead of using hashtables to distribute the tuples in the stream to different machines, as did Bin Liu in CAPE and the authors of Exchange and Flux operators, Bradley put forward the idea of replicating streams directly onto different machine. Then through constant communication to indicate which machine can have enough space of state to store tuples, tuples can always find some machine to store without worrying about overflow states. The task of our project is to implement this idea and try to prove this idea is feasible by generating the correct result using our methods. Since our final project is based on the work of the whole working process, it may have redundancy with the previous proposal or progress report.

Project Description

Methodology

Consider the example of a binary join operator in a stream query plan, joining two streams named A and B. Each tuple that arrives at the join operator from stream A is compared against the state for stream B, the tuples in stream B which have come in within a specified window of time or events. Suppose the state for B grows very large and places a strain on the memory of its containing machine. We propose to partition the state for B across several machines; that is, have each of several machines hold

a portion of the state for B. This partitioned state will behave just like the original single-machine state.

This requires that new tuples from stream A will still be compared against all tuples; i.e., tuples in all of the partitions of the state for B. Also, the new tuple from A will be stored somewhere in the partitioned state for A. Intuitively, if we want to compare a tuple against unstructured partitions across several machines, each machine will need to receive and review the tuple. To ensure that each machine receives each tuple, a replicating stream split operator will be inserted into the query plan as a child of the partitioned stateful operator. This replicating stream split operator generates a copy of each new tuple to each machine. Additionally, to ensure that the partitioned operator gives a consistent output, the streams which are output by the partitioned operators will be merged into a single stream using a dynamic union operator.

The main advantages of using this replicated approach are twofold. First and foremost, when using a replication style operator partitioning scheme, neither states nor state partitions ever need to be moved between machines. When a state partition becomes full, it needs only pass the responsibility of tuple storage to another machine with a less full state. Second, since replication does not rely on hashing to route new tuples, it is possible to use the partitioning scheme for a wider variety of operators than equality hash join.

A token passing idea is put forward by Bradley in the above replicated approach. A token is a permission or resource held by only one machine in a network of clones. For each state partition in replication style parallelization, the storage token is a toggle on which the storage of new tuples is predicated. At any point along the data streams, the one token for each state in the query plan is held by only one machine. This means that at any point in the data stream, a tuple being fed into the partitioned,operator will be passed to all participating machines, but stored only in the state partition which has been nominated to hold the token for that segment of the input stream.

Implementation task

This project covers three implementation tasks related to memory-based operator state partitioning. Since these tasks build off of each other in a sequential fashion, they may be thought of as "steps" to implement and finish this project in sequence.

Step 1: Implement replication-aware split and merge operations.

Bin Liu has created a partition-aware split operator which sends single tuples to one of a known number of destinations, based on hash values and a live lookup table. After the tuples are sent to these destinations, they are processed by an equality join operator and results are sent to a single union operator.

Our first project goal builds off of this work by reforming hash-based partition splits into "candle flame" splits, where all copies of an operator will receive each new tuple. This allows for a greater variety of operator types to be supported, and also removes the need to move states between different machines to achieve a balance in memory usage.

Note that this also affects the creation of new partitions on other machines. Under the current system, a machine which has been overloaded with large partitions will give half to a new machines. Conversely, under candle flame replication, a machine which is new to the partitioning of an operator will receive nothing except the token and a stream of new tuples from child operators. This new partition immediately takes over the role of new tuple storage, and machines with overloaded partitions are then left to reduce their state sizes over time through existing tuple expiration schemes.

Step 2: Implement and test token passing.

In replicated partitioning, each state (as an aggregate of all the partitions across the network) possesses one "token," which is bestowed upon one machine at any one time. All machines which have a partition of the operator compare new tuples to existing tuples in their states, however only the holder of the token for a state stores new tuples into that state.

In this step, we have two subparts. First we show that token passing works as expected, by first using token passing principles to extend a distributed selection operator. If our experiment works as expected, then only the machine with the token will output a result from the selection. We test this by checking the output of the operator for duplicate results (indicating that too many machines have the token) or missing results (indicating that too few machines have the token).

Once this first subpart has been shown to work as expected, the token passing method is expanded to a binary join operator. In this implementation, whether a machine has the token for a state will represent whether new tuples are added to that machine's partition for the state. If our experiment works as expected, we have the same result for an operator on one machine or an operator distributed across several machines, with the exception that the ordering of results may differ. We use this knowledge to test our implementation against the same query plan running on a single machine.

To implement this step, we require a method by which we may simultaneously inform all of the machines with partitions of the operator's states of the token being passed. Since not all machines may be at the same level of progress in processing the replicated data stream, to ensure integrity of data storage across streams the message should be embedded in the data stream itself. We use command messages, a modified form of punctuations, to embed the token passing message into the input streams for each machine. Additionally, the operator types which we elect to use for this project (one each from selection and join) must be extended to recognize and act on these punctuation messages.

Step 3: Initiation capability in distribution manager

As the distribution manager is primarily responsible for maintaining and manipulating the various data flows across the query plans, so too must it be primarily responsible for initiating the token passing process, in response to any individual query processor announcing that it is overloaded with memory.

The query processor messages, and the events which trigger them, are outside the scope of this project. However, we implement an automation in the distribution manager which periodically requests that the split operator move the token to another machine, for each state in our experimental query plans.

Each query processor has an open port for listening for messages from the distribution manager. As the message syntax is well-defined (using packetized, serialized Java classes which are identified by type), this part of the project is implementable near the time of experiments.

Implementation of code/Classes

· XATCommandMsg, the class we defined to send the Token Command messages.

The XATCommandMsg interface defines a subclass of XATTuple tailored for sending one or more commands, each with an enumerated message type (symbolic integer values) and a flexible argument container. By using the XATDataValue class for command message arguments, we allow command argument styles to scale to the needs of the command. For passing the storage token between machines, an integer identifying the unique ID of the target machine is sufficient. Additionally, for future commands which may require collection values, the support is already implemented.

Command messages, including the token passing messages, can be regarded as a special tuple. We set the value of ObjTypeID of this special tuple to 208. Then by using getObjTypeID() method, we can efficiently tell whether this tuple in the queue is a command message or not. We have implemented the getObjTypeID() method and other methods that can be used to change the attributes of the token in our derived XATCommandMsg interface.

The XATCommandMsg interface is a tool primarily used by our replication-aware operators.

· We implemented the following three replication-aware operators.

1. ReplicatedStreamSplitOperator. We have talked about how to implement this operator in detail in our progress report. The ReplicatedStreamSplitOperator sends data to all of its parent operators concurrently, and where appropriate sends messages about tuple storage to its parents in the form of XATCommandMsg objects with the form:
array commandType(length=1), array args(length=1):

commandType[0] = XATCommandMsg.PASS_TOKEN (static int = 1)

args[0] = target machine ID (String).

An operator which takes this command must check to see whether it resides on the machine which is specified by the command argument. If the command arg and the machine name specified by the distribution configuration match, the partition of the operator state held there is now holding the storage token and storing new tuples. Otherwise it is not holding the token and new tuples are discarded.

2. interface ReplicationAwareStreamSelectOperator, which is the vehicle of our first correctness test. The owner of the storage token in this operator is the only one which processes input and creates result. The others are forced to drop all incoming tuples without processing. This operator is derived from regular StreamSelectOperator. Here is the working process for ReplicationAwareStreamSelectOperator:

· While the full implementation of this replicated operator will begin with the operator active on only one machine, for now we will start execution with the operator already partitioned. As a shortcut to decide initial token location, on initialization, we just give the token to Machine 1.

· For our experiment, at regular intervals the distribution manager instructs the split operator to send this select operator an XATCommandMsg telling it where to move the token (since we only have two machines in our experiment, it will go alternately to Machine 1 and Machine 2).

· When this operator gets a command message, it will see that it contains a PASS_TOKEN message (getCommandType(0) will return XATCommandMessage.PASS_TOKEN, a constant that evaluates to 1). The argument to this message (getCommandArgs(0)) is the Machine ID of the machine that should get the token.

· If the machine has the token, it operates normally as a select operator.

· If the machine does not have the token, it outputs nothing (i.e. drop

selectivity to 0).

3. Interface ReplicationAwareBinaryWindowEquiJoin, which is the vehicle of all other correctness tests, as well as robustness tests (outside the scope of this project). The owner of the storage token in this operator is the only one which stores new tuples in the state for that particular input. Other machines, those without the storage token, will process new tuples against existing tuples but will not store new tuples from that input stream. This operators is similar as ReplicationAwareStreamSelectOperator, but still has difference in the Token-hold state. Here is how this operator works:

· We now have two tokens, that represent the states for the outer and inner stream.

· Each token can move independently. You have to move the token for the outer state only when you get a command message from the first input queue, and move the token for the inner state only when you get a command from the second input queue.

· If the machine has the token for a state, it stores new tuples in that state.

· If the machine does not have the token for a state, it still compares

new tuples on that side to the other side, and outputs the result, but it

does not store the tuple in its corresponding state.

4. Extensions to distribution manager which have not yet been named. The expected outcome of this is a derivative of the DistributedExecutionController interface.

Experiment and Issues

We will talk about the following issues we need to deal with from experiment setup to running:

Distribution Part:

This part is responsible for getting messages from the distribution manager. The things we have implemented are:

1. Writing a class for token pass events. We have implemented the code for this part.

2. Extend the ConnectionHandler class, which is part of the CollectionListener class hierarchy. The ConnectionListener accepts new packets from other network nodes, and spawns a new ConnectionHandler to process the type of message and the information contained therein. We have extended the ConnectionHandler to recognize the new PassStorageToken message class (not to be confused with the token passing messages encapsulated within XATCommandMessages. This message is encapsulated in a Java Packet.)

3. Having the distribution manager fire a packet containing this PassStorageToken object at regular intervals. The distribution manager spawns a timed task where every 30 seconds a new PassTokenMessage is created, encapsulated, and output over the network to the listener port on the query processor which

4. ConnectionHandlers, as mentioned above, read packets and check the different types of objects within the packets with subclassing and instanceof operators. This maybe useful when we need to implement listening for overload messages from the query processors. So in the future, we will need to find the analog for the distribution manager to receive messages.

Partitioning part.

We need to deal with the following issues in this part:

1. Checking for partitioning. This is done by checking the types of the operators used in the quer plan, in the function DistributionManager.checkpartitionedProcessing(DistributionTable). The function is called early in the run() method for the Distribution Manager.

2. Enabling partitioned distribution. The difference with the previous program in CAPE here is inteading of using Distributiontable.add(curNode, this.machines[machineNum]), we need to use Distributiontable.add(curNode, this.machines). We need to send the partitioned stream to both machines, which also means that we had to extend the creation of network queues in the connection manager to include the multiple parent machines for split operators.

Experiment Setup part.

We had the following tasks in this part:

1. Ensure that the application supported raw output, and implement it if it did not. The application, as it turns out, outputs raw data as its primary function. Therefore we needed to make no changes to the application, though we did need to rename the output file after each experiment.

2. Stream Generator. We needed to be sure that we had the same input streams for each run of our experiments. We also intended to accomplish an input rate of 1-2 tuples per second, so that the size of output data would not be excessive. The problem we met is that 100 tuples to a NetworkPacket is hardcoded into the stream generator's Client class, preventing a steady 1-tuple/sec rate. The suggested workaround from other CAPE project members, and the one we ended up using, was to modify the hardcoded value to 1.

3. Distribution configuration. We needed to make sure that the partition method works.

4. Experiment setup. The total experiment time is 5 minutes. Every 30 seconds we pass a token to indicate which state should hold the token. With one tuple output per second, we had a total of 300 tuples output. With about 45 tuples output by each experiment, we had an overall selectivity of 0.15. To achieve this result with our two operators and our input streams, we used these selection criteria:

· It bears repeating, first and foremost, that the input stream sources were the Web server logs from the 2002 FIFA World Cup website. Server logs generally contain the following information: client IP address, time of request, the text of the HTTP request from the client (which includes the request type and the requested resource), response code given, and number of bytes transferred.

· With the select operator, we used the transfer size as the selection column. All records which had transfer sizes greater than 1K (1024 bytes) were output, while those with less were discarded.

· For the join operator, we used two different logs from two different days. Using an equality join, we output a join of all pairs of input records which had the same resource request message, one from each day.

5. Queryplan. We have two query plans. One has 3 operators in a simple chain to test the new select operation. That is ReplicatedStreamSplitOperator- ReplicationAwareStreamSelectOperator –StreamUnionOperator. The other plan is to test the new join operation. We have ReplicatedStreamSplitOperator- ReplicationAwareBinaryWindowEquiJoin–StreamUnionOperator in this plan. This part is easy.

6. Verificaiton.

We needed to verify that one-machine, one operator plan produced same output on successive runs, to satisfy our requirement that the input streams were deterministic and were the same across experiments. This was shown to be true by manual review of the tuples output from each experiment.

We needed to verify that the replicated operator in one-machine chain plan produced same output as above. This was also shown to be true with the same, and paved the road for the main experiments which we have shown.

Connection Manager

We were at first concerned when we found in the source code for ConnectionManagerImp: “//@ TODO RIGHT NOW WE ONLY SUPPORT TREES, HERE IS WHERE THE CHANGE WILL HAVE TO BE MAKE TO SUPPOT DAG’S”. It turns out that we didn’t need DAGs, since per each machine the query plan is still a tree. However, we did need to rewrite the connect() function to accommodate multiple machines per operator. Operators with multiple machines as parents, as well as operators which themselves had to be connected on multiple machines, both had to be written into the function.

Problems and Issues

The following is a non-exhaustive list of problems which we encountered along the way:

1. Difficulty in matching string for picking out our class names. At first, we had used string matching functions which were exclusive to the Java 5 platform, and only later did we find that these were not available in Java VM version 1.4, which makes up the default platform for CAPE and D-CAPE. This became an issue when the String.matches(String) function did not correctly recognize the regular expressions which we fed it. Finally, we were able to use String.indexOf(String) function to express whether the word "Replication" or "Replicated" appeared in the class name of the operator object.

2. Bugs in our own code, often took hours to find. This was a serious drain on our time, as sometimes our bugs took hours to find and cropped up in non-obvious locations.

3. Choosing the wrong config file. While this was minor, it was also a waste of time to work with.

4. Connection Manager did not support DAGs. As reported, this was a non-issue, but did alert us to the need to support operators on multiple machines without using operator partition pools.

5. Windows Firewall. Since CAPE is a flexible system that can run on practically any computer platform, we decided that we would use existing computing resources in labs which were available to us. Unfortunately, with the rise of Windows XP Service Pack 2, the Windows Firewall was active by default and prevented the JVM from opening listener sockets. Therefore, we were limited to using computers to which we had administrative access, since normal users cannot change the firewall settings. As a result, we had to run our experiments on machines in separate rooms, going back and forth each time D-CAPE required a restart or relevant class files were updated.

6. How the XATQueues gets the schemata. It in fact happened that because of the distribution manager operation scheme, the XATCommandMsg events were being generated by the Split operators before any actual data came through. This was a problem because XATQueues look at the first tuple which they receive to determine what their schemata will be. XATCommandMsg objects do not have schemata, so XATQueues were initializing with blank schemata instead of that of the input stream. This was fixed with a simple kludge, a delay before the PassStorageToken message was first fired by the distribution manager.

Conclusion

As a result of manually reviewing the results of running our various experiments, we have determined that the hypothesis is correct for, at very least, the special cases that we have examined in this project. With the exception of a slight time skew manifested in tuples being returned out of order, the output of the non-replicated operators is exactly the same as that of their replicated counterparts. This is a positive result, as it allows for experimentation to continue in the realm of replication-style partitioned stream operators. In the future, experiments will be conducted to determine how much the replication style operators increase the robustness of the D-CAPE system, and also when is a good time to move the storage token across machines. All of these questions will be addressed in the near future, as Bradley begins the bulk of his thesis work.

Appendix: Part of our code

 (We didin’t list all the code becaust it’s too long.)

/*

 * Created on 2005-4-25

 *

 * TODO To change the template for this generated file go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

package edu.wpi.cs.dsrg.xmldb.xat.common.operator.replicatedparallelstreamoperator;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.XATStreamOperator;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.windowstreamoperator.XATMultiQueueWindowStreamOperator;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.windowstreamoperator.XATMultiQueueWindowStreamOperatorImp;

import edu.wpi.cs.dsrg.xmldb.xat.common.xatnode.XATDataValue;

import edu.wpi.cs.dsrg.xmldb.xat.common.xatnode.XATNode;

import edu.wpi.cs.dsrg.xmldb.xat.common.dag.*;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.windowstreamoperator.*;

import java.util.*;

//import java.lang.reflect.Constructor;

//import streamgenerator.*;

import edu.wpi.cs.dsrg.xmldb.xat.common.relationalstreamexpression.*;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.state.*;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.*;

import edu.wpi.cs.dsrg.xmldb.xat.component.distribution.configuration.Machine;

import edu.wpi.cs.dsrg.xmldb.xat.component.streamgenerators.server.*;

import edu.wpi.cs.dsrg.xmldb.xat.common.xatnode.*;

/**

 * @author Mingzhu Wei

 *

 * TODO To change the template for this generated type comment go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

public class ReplicationAwareBinaryWindowEquiJoinImp

extends WBinaryJoinOperatorImp implements

ReplicationAwareBinaryWindowEquiJoin {

//above header instead of "extends XATMultiQueueWindowStreamOperatorImp" to take advantage of ClassBuilder functionality

/**

 * @param oldop

 * @param newnode

 */

/*

public ReplicationAwareBinaryWindowEquiJoinImp(

ReplicationAwareBinaryWindowEquiJoinImp oldop, XATNode newnode) {

super(oldop, newnode);

// TODO Auto-generated constructor stub

}

*/

/**

 * @param oldop

 * @param newnode

 */

/*

public ReplicationAwareBinaryWindowEquiJoinImp(

ReplicationAwareBinaryWindowEquiJoinImp oldop, XATNode newnode) {

super(oldop, newnode);

// TODO Auto-generated constructor stub

}

*/

/** if this is oldBoxRoot, allOldOperators will be set to the right array. Otherwise, this is null */

private XATStreamOperator[] allOldOperators = null;

private ExpressionStr expression;

ArrayList keptTuples = new ArrayList();

boolean leftStateToken = false;

boolean rightStateToken = false;

boolean firstrun = true;

String MachineName;

public String getMachineName (Machine curMachine){

this.MachineName = curMachine.getMachineName();

return this.MachineName;

}

/** The numOfChildren and numOfChildrenDone are here to decide if an operator inside an old box has done

 * during migration stage, meaning all the old tuple in states are purged.

 * numOfChildren starts as the real num of children of this operator. Since we have only binary join now, this is

 * always set to be 2.

 * numOfChildrenDone always starts as 0, and increased by its child operator if that operator is done.

 *

 * When numOfChildrenDone == numOfChildren, and the two states of this operator has no tuple gets processed after

 * migration starts, this operator is also done and will increase its parent's numOfChildrenDone.

 */

public ReplicationAwareBinaryWindowEquiJoinImp(XATNode node) {

super(node);

}

public ReplicationAwareBinaryWindowEquiJoinImp

(ReplicationAwareBinaryWindowEquiJoinImp oldop, XATNode newnode) {

super(oldop, newnode);

this.expression = oldop.expression;

//states = new WOperatorState[2];

//this.inToOutColPos = oldop.inToOutColPos;

this.windowSize = oldop.windowSize;

}

public ReplicationAwareBinaryWindowEquiJoinImp(XATNode node, Machine curMachine) {

super(node);

}

/**

 * Insert the method's description here.

 * Creation date: (2/17/2003 4:48:47 PM)

 */

public void initState(String statetype) {

try{

//Constructor con = Class.forName(statetype).getConstructor();

states = new WOperatorState[2];

states[0] = (WOperatorState)Class.forName(statetype).newInstance();

states[1] = (WOperatorState)Class.forName(statetype).newInstance();

states[0].setOperator(this);

states[1].setOperator(this);

if(this.windowSize > 0) {

((WOperatorState)states[0]).setTimeWindow(this.windowSize);

((WOperatorState)states[1]).setTimeWindow(this.windowSize);

}

}catch(Exception e) {

e.printStackTrace();

}

}

/**

 * Clear all tuples inside this operator and all tuples insides its states

 */

/**

 * This method is used at the end of Parallel Migration when old box is done.

 * If this operator is a leaf operator of new box, the kept tuples

 * for purpose of preserve partial order will now be pushed out and

 * enqueued to output queue all at once.

 * Creation date: (6/26/2003 4:31:05 AM)

 */

public void enqueueKeptTuples() {

XATTuple[] tuples = (XATTuple[]) keptTuples.toArray(new XATTuple[] {

});

this.getOutputQueue().enqueue(tuples, this);

System.out.println(

"push out " + tuples.length + " tuples from newbox root operator");

keptTuples.clear();

this.isNewBoxRoot = false;

return;

}

/**

 * Insert the method's description here.

 * Creation date: (4/5/2003 6:59:19 PM)

 */

private void execOperator(int lHowmany, int rHowmany) {

XATQueue oQueue = this.getOutputQueue();

XATQueue linputQueue = this.getLeftInputQueue();

XATQueue rinputQueue = this.getRightInputQueue();

XATTuple[] tuples;

XATTuple[] joinedtuples;

 //join tuples from left queue to right state

if(lHowmany != 0) {

tuples = linputQueue.dequeue(lHowmany, this);

XATTuple[] tuplesNoCmdMsgLeft = DelCmdMsg(tuples);

if((states[1].getStateSize() != 0) && (tuplesNoCmdMsgLeft.length > 0)) {

joinedtuples = ((WOperatorState)states[1]).probe(tuplesNoCmdMsgLeft, this.expression, 1);

if(joinedtuples.length > 0)

oQueue.enqueue(joinedtuples, this);

}

if (this.leftStateToken == true) {

((WOperatorState)states[0]).insertTuple(tuples);

}

}

//join tuples from right queue to left state

if(rHowmany != 0) {

tuples = rinputQueue.dequeue(rHowmany, this);

XATTuple[] tuplesNoCmdMsgRight = DelCmdMsg(tuples);

if ((states[0].getStateSize() != 0) && (tuplesNoCmdMsgRight.length > 0)) {

joinedtuples = ((WOperatorState)states[0]).probe(tuplesNoCmdMsgRight, this.expression, 0);

if (joinedtuples.length > 0)

oQueue.enqueue(joinedtuples, this);

}

if (this.rightStateToken == true){

((WOperatorState)states[1]).insertTuple(tuples);

}

}

}

private void execOperatorToken(int lHowmany, int rHowmany) {

XATQueue oQueue = this.getOutputQueue();

XATQueue linputQueue = this.getLeftInputQueue();

XATQueue rinputQueue = this.getRightInputQueue();

XATTuple[] tuples;

XATTuple[] joinedtuples;

/* join tuples from left queue to right state */

if(lHowmany == 1) {

tuples = linputQueue.dequeue(lHowmany, this);

if ((tuples.length >=1)&& (!JudgeTupleToken(tuples[0])))

{

if((states[1].getStateSize() != 0)) {

joinedtuples = ((WOperatorState)states[1]).probe(tuples, this.expression, 1);

oQueue.enqueue(joinedtuples, this);

}

}

else

oQueue.enqueue(tuples, this);

if (this.leftStateToken == true) {

((WOperatorState)states[0]).insertTuple(tuples);

}

}

/*join tuples from right queue to left state */

if(rHowmany == 1) {

tuples = rinputQueue.dequeue(rHowmany, this);

if ((tuples.length >=1)&& (!JudgeTupleToken(tuples[0])))

{

if(states[0].getStateSize() != 0) {

joinedtuples = ((WOperatorState)states[0]).probe(tuples, this.expression, 0);

oQueue.enqueue(joinedtuples, this);

}

if (this.rightStateToken == true){

((WOperatorState)states[1]).insertTuple(tuples);

}

}

else

oQueue.enqueue(tuples, this);

if (this.leftStateToken == true) {

((WOperatorState)states[0]).insertTuple(tuples);

}

}

}

public boolean JudgeTupleToken(XATTuple tuple)

{

if (tuple.getObjTypeID()==208)

return true;

else return false;

}

/**

 * Insert the method's description here.

 * Creation date: (6/3/2003 2:07:16 AM)

 * @return boolean

 */

public boolean getAllOldPurgedFlag() {

return

(((WOperatorState)states[0]).checkAllOldTuplePurged() && ((WOperatorState)states[1]).checkAllOldTuplePurged());

}

/**

 * @return

 */

public ExpressionStr getExpression() {

return expression;

}

/**

 * Insert the method's description here.

 * Creation date: (4/3/2003 5:00:07 AM)

 * @return queryplanelements.WFIFOState

 */

public OperatorState getLeftState() {

return states[0];

}

public int getLeftStateSize() {

return states[0].getStateSize();

}

/**

 * Insert the method's description here.

 * Creation date: (5/28/2003 12:11:23 PM)

 * @return int

 */

/**

 * Insert the method's description here.

 * Creation date: (4/3/2003 5:00:50 AM)

 * @return queryplanelements.WFIFOState

 */

public OperatorState getRightState() {

return states[1];

}

public int getRightStateSize() {

return states[1].getStateSize();

}

public int getStateSize() {

return (states[0].getStateSize() + states[1].getStateSize());

}

/**

 * Insert the method's description here.

 * Creation date: (3/15/2003 10:23:33 PM)

 * @return int

 */

/**

 * This reinit method is only used during the stage of optimization.

 * This method assumes that all operator properties, including the predicates, window size, state schema

 * and input queue schema has been initialized at the execution init stage.

 * After optimization, the state and output queue schema might be changed so this method just reset them

 * to the corrent schema according to the input queue schema.

 */

/

/**

 * Insert the method's description here.

 * return: -1 nothing in queue, no run

 *

0 exception

 *

1 run successfully

 *

 * Creation date: (1/21/2003 10:57:01 AM)

 */

public boolean run() {

if(firstrun) {

String MachineName = System.getProperty("NAME");

if (MachineName.equals("Machine 1"))

{

leftStateToken = true;

rightStateToken =true;

}

else

{

leftStateToken = false;

rightStateToken =false;

}

firstrun = false;

}

if ((this.getLeftInputQueue().getSchema() == null) || (this.getRightInputQueue().getSchema() == null)){

return false;

}

if(this.getOutputQueue().getSchema() == null){

init();

}

/** figure out how many tuples to dequeue from left and right queue */

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int size1 = 1;

int size2 = 1;

int lHowmany = 0, rHowmany = 0;

int dequeueHowmany = Integer.parseInt(this.getProperty("NUMBER_OF_TUPLES_TO_DEQUEUE"));

//System.out.println(this + "tuple to dequeue " + dequeueHowmany);

/* if this is an old operator, dequeue all tuples from its input queue if the queue is not oldboxinputQ */

/* this is for the purpose of finishing migration 1 quicker */

if(lQueue.getQueueSize(this) > 0) lHowmany = size1;

if(lQueue.getQueueSize(this) > 0) rHowmany = size2;

if (debugFlag) {

System.out.println("dequeue " + lHowmany + "tuples from left queue");

System.out.println("dequeue " + rHowmany + "tuples from right queue");

}

// Judge whether the left tuples has the token

XATTuple[] tuplesLeft = this.getLeftInputQueue().peek(lHowmany, this);

Vector tupleListLeft = new Vector();

for (int i=0; i<tuplesLeft.length; i++) {

//Judge whether the current tuple is a Commandtype:

if (tuplesLeft[i].getObjTypeID()==208)

{

if (((XATCommandMsg)tuplesLeft[i]).getCommandType(0)==XATCommandMsg.PASS_TOKEN)

{

XATDataValue argsValue = ((XATCommandMsg)tuplesLeft[i]).getCommandArgsArray()[0];

String tokenMachineName = argsValue.convertToString();

String curMachineName = System.getProperty("NAME");

if (tokenMachineName.equals(curMachineName))

this.leftStateToken = true;

else

this.leftStateToken = false;

}

this.getLeftInputQueue().dequeue(lHowmany, this);

lHowmany=0;

}

}

//

 Judge whether the right tuples has the token

XATTuple[] tuplesRight = this.getRightInputQueue().peek(rHowmany, this);

Vector tupleListRight = new Vector();

for (int i=0; i<tuplesRight.length; i++) {

//Judge whether the current tuple is a Commandtype:

if (tuplesRight[i].getObjTypeID()==208)

{

if (((XATCommandMsg)tuplesRight[i]).getCommandType(0)==XATCommandMsg.PASS_TOKEN)

{

XATDataValue argsValue = ((XATCommandMsg)tuplesRight[i]).getCommandArgsArray()[0];

String tokenMachineName = argsValue.convertToString();

if (tokenMachineName.equals(System.getProperty("NAME")))

this.rightStateToken = true;

else

this.rightStateToken = false;

}

this.getRightInputQueue().dequeue(rHowmany, this);

rHowmany=0;

}

}

execOperator(lHowmany, rHowmany);

/* if this is root operator of old box, check to see if both states have all old tuples purged */

/* solely used by migration 1 */

/* run successfully */

return true;

}

public XATTuple[] DelCmdMsg(XATTuple[] tuples){

int length= tuples.length;

XATTuple[] tuplesNoToken = new XATTuple[length];

int j = 0;

for (int i=0; i<tuples.length; i++) {

//Judge whether the current tuple is a Commandtype:

if (tuples[i].getObjTypeID()!= 208)

{

tuplesNoToken[j] = tuples[i];

j++;

}

}

return tuplesNoToken;

}

/**

 * Insert the method's description here.

 *

 * This method is currently NOT IN USE.

 *

 * Creation date: (5/25/2003 4:08:55 AM)

 * @return int

 */

public int runForMigration1() {

/** figure out how many tuples to dequeue from left and right queue */

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int lHowmany = (lQueue.isOldBoxInput()) ? 0 : lQueue.getQueueSize(this);

int rHowmany = (rQueue.isOldBoxInput()) ? 0 : rQueue.getQueueSize(this);

if (debugFlag) {

System.out.println(

"dequeue " + lHowmany + "tuples from left queue");

System.out.println(

"dequeue " + rHowmany + "tuples from right queue");

}

try{

lQueue.setProperty("DEQUEUED_TUPLE_COUNT", "" + lHowmany);

rQueue.setProperty("DEQUEUED_TUPLE_COUNT", "" + rHowmany);

} catch(Exception e) {

System.out.println(e);

}

if ((lHowmany + rHowmany) == 0)

/* nothing to run */

return -1;

execOperator(lHowmany, rHowmany);

/* run successfully */

return 1;

}

/**

 * Insert the method's description here.

 * Creation date: (5/25/2003 4:08:55 AM)

 * @return int

 */

public int runForMigration2(long latestTimeStamp) {

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int lsize = 0, rsize = 0;

int lHowmany = 0;

int rHowmany = 0;

/** figure out howmany tuple to dequeue from left queue */

if ((lsize = lQueue.getQueueSize(this)) != 0) {

lHowmany = lsize;

//if stream Queue, dequeue based on latestTimeStamp

List ownerList = lQueue.getQueueOwner();

int ownersize = ownerList.size();

int ownerindex = 0;

while (ownerindex < ownersize) {

//if (lQueue.getQueueOwner() instanceof XATStream) {

if (ownerList.get(ownerindex) instanceof XATStream) {

XATTuple[] tuples = lQueue.peek(lsize, this);

for (int i = 0; i < lsize; i++) {

if (((XATTuple) tuples[i]).getMinTimeStamp() >= latestTimeStamp) {

lHowmany = i;

break;

}

}

}

break;

}

ownersize++;

}

/* figure out howmany tuple to dequeue from right queue */

if ((rsize = rQueue.getQueueSize(this)) != 0) {

rHowmany = rsize;

if (rQueue.getQueueOwner() instanceof XATStream) {

XATTuple[] tuples = rQueue.peek(rsize, this);

for (int i = 0; i < rsize; i++) {

if (tuples[i].getMinTimeStamp() >= latestTimeStamp) {

rHowmany = i;

break;

}

}

}

}

try{

lQueue.setProperty("DEQUEUED_TUPLE_COUNT", "" + lHowmany);

rQueue.setProperty("DEQUEUED_TUPLE_COUNT", "" + rHowmany);

} catch(Exception e) {

System.out.println(e);

}

if ((lHowmany + rHowmany) == 0)

/* nothing to run */

return -1;

if (debugFlag) {

System.out.println(

"dequeue " + lHowmany + "tuples from left queue");

System.out.println(

"dequeue " + rHowmany + "tuples from right queue");

}

execOperator(lHowmany, rHowmany);

/* run successfully */

return 1;

}

public void setDefaultProperties() {

super.setDefaultProperties();

addProperty("TIME_WINDOW","0");

// type of state

addProperty("STATE_TYPE", "WFIFOSTATE");

}

/**

 * @param expression

 */

public void setExpression(ExpressionStr expr){

this.expression = expr;

}

public void setNumberOfPossibleOutputs() {

/** figure out how many tuples to dequeue from left and right queue */

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int lHowmany = Integer.parseInt(lQueue.getProperty("DEQUEUED_TUPLE_COUNT"));

int rHowmany = Integer.parseInt(rQueue.getProperty("DEQUEUED_TUPLE_COUNT"));

int lStateSize = states[0].getStateSize();

int rStateSize = states[1].getStateSize();

int possibleOutputs = lHowmany * rStateSize + rHowmany * lStateSize + lHowmany * rHowmany;

try{

this.setProperty("NUMBER_OF_POSSIBLE_OUTPUTS", ""+possibleOutputs);

} catch(Exception e) {

System.out.println(e);

}

}

/**

 * Insert the method's description here.

 * Creation date: (6/3/2003 1:40:53 AM)

 * @param operators edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.XATStreamOperator[]

 */

public void setOldBoxOperators(XATStreamOperator[] operators) {

allOldOperators = operators;

}

/**

 * Insert the method's description here.

 * Creation date: (3/15/2003 10:24:23 PM)

 * @param newWindow int

 */

public void setWindowSize(long newWindow) {

//join operator has the same timeWindow with both its states

this.windowSize = newWindow;

if(states != null) {

((WOperatorState)states[0]).setTimeWindow(newWindow);

((WOperatorState)states[1]).setTimeWindow(newWindow);

}

}

/**

 * Insert the method's description here.

 * Creation date: (2/14/2003 9:33:59 AM)

 * @return java.lang.String

 */

public String toString() {

String rs = new String();

String sName = this.getClass().getName();

//find the last dot.

int index = 0;

for(index = sName.length()-1; index >=0; index--)

if(sName.charAt(index) == '.')

break;

rs = sName.substring(index + 1) + " ";

String id = this.getProperty("OBJECT_ID");

if(id == "-1"){

rs = rs + " " + this.hashCode();

} else{

rs = rs + id + " " +this.hashCode();

}

if(this.isActive()) rs += " ACTIVE ";

else rs+= " INACTIVE ";

return rs;

}

public String toToolTipString() {

String rs = new String();

String sName = this.getClass().getName();

//find the last dot.

int index = 0;

for(index = sName.length()-1; index >=0; index--)

if(sName.charAt(index) == '.')

break;

rs = sName.substring(index + 1) + " ";

String id = this.getProperty("OBJECT_ID");

if(id == "-1"){

rs = rs + hashCode();

} else{

rs = rs + id;

}

if(this.isActive()) rs += " ACTIVE ";

else rs+= " INACTIVE ";

/** now add the join predicate and window size info */

rs += "\n";

rs += "predicate: " + expression +"\n";

rs += "window size = "+windowSize+"\n";

return rs;

}

/*

 * process all accumulated tuples in input queues that have their maxtimestamp

 * smaller than the given maxtimestamp

 */

public boolean cleanAccumulatedTuples(long maxtimestamp) {

if ((this.getLeftInputQueue().getSchema() == null) || (this.getRightInputQueue().getSchema() == null)){

return false;

}

if(this.getOutputQueue().getSchema() == null){

init();

}

/** figure out how many tuples to dequeue from left and right queue */

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int size1 = lQueue.getQueueSize(this);

int size2 = rQueue.getQueueSize(this);

int lHowmany=size1;

int rHowmany=size2;

if(lQueue.isOldBoxInput()) {

XATTuple[] tuples = lQueue.peek(size1, this);

for (int i = 0; i < size1; i++) {

if (((XATTuple) tuples[i]).getMaxTimeStamp() >= maxtimestamp) {

lHowmany = i;

break;

}

}

}

if(rQueue.isOldBoxInput()) {

XATTuple[] tuples = rQueue.peek(size2, this);

for (int i = 0; i < size2; i++) {

if (((XATTuple) tuples[i]).getMaxTimeStamp() >= maxtimestamp) {

rHowmany = i;

break;

}

}

}

if((lHowmany + rHowmany) == 0)

return false;

if (debugFlag) {

System.out.println("dequeue " + lHowmany + "tuples from left queue");

System.out.println("dequeue " + rHowmany + "tuples from right queue");

}

execOperator(lHowmany, rHowmany);

/* run successfully */

return true;

}

/*

 * process all accumulated tuples in this operators' input queues.

 */

public boolean cleanAllAccumulatedTuples() {

if ((this.getLeftInputQueue().getSchema() == null) || (this.getRightInputQueue().getSchema() == null)){

return false;

}

if(this.getOutputQueue().getSchema() == null){

init();

}

/** figure out how many tuples to dequeue from left and right queue */

XATQueue lQueue = this.getLeftInputQueue();

XATQueue rQueue = this.getRightInputQueue();

int lHowmany = lQueue.getQueueSize(this);

int rHowmany = rQueue.getQueueSize(this);

/** nothing to clean */

if(lHowmany == 0 && rHowmany == 0) {

return false;

}

if (debugFlag) {

System.out.println("dequeue " + lHowmany + "tuples from left queue");

System.out.println("dequeue " + rHowmany + "tuples from right queue");

}

execOperator(lHowmany, rHowmany);

/* run successfully */

return true;

}

/*

 * recompute the unmatched states inside this operator.

 * Usually the unmatched states are computed based on the matched states inside one of the

 * children operator of this operator.

 *

 * return:

 * TRUE -- if the states (inside child operator) that the recomputation of the unmatched states are based on are

 * all matched, and the recomputation is successful.

 * FALSE -- if any of the states (inside child operator) that are used to recompute the unmatched states

 * is unmatched, or the recomputation is unsucessful.

 */

public boolean recomputeUnmatchedState() {

boolean returnvalue = true;

try {

/* if left state is unmatched */

if (states[0].isMatched() == false) {

if(this.getNode().getOpChildrenSize() < 1)

throw new Exception("operator with unmatched state must have at least one child!");

XATStreamOperator childop = this.getNode().getOpChild(0).getStreamOperator();

if(!childop.getOutputQueue().equals(this.getNthInputQueue(0)) || !(childop instanceof WBinaryJoinOperator)) {

throw new Exception("Error recomputing unmatched state!");

}

WOperatorState lstate = (WOperatorState)childop.getState()[0];

WOperatorState rstate = (WOperatorState)childop.getState()[1];

if(lstate.isMatched() && rstate.isMatched()) {

XATTuple[] rstatetuples = rstate.getAllStateTuples();

XATTuple[] joinedtuples;

joinedtuples = lstate.probe(rstatetuples, this.expression, 0);

((WOperatorState)states[0]).insertTuple(joinedtuples);

states[0].setMatched(true);

} else {

returnvalue = false;

}

}

/* if right state is unmatched */

if (states[1].isMatched() == false) {

if(this.getNode().getOpChildrenSize() < 1)

throw new Exception("operator with unmatched state must have at least one child!");

XATStreamOperator childop = this.getNode().getOpChild(0).getStreamOperator();

if(childop.getOutputQueue() != this.getNthInputQueue(1)) {

childop = this.getNode().getOpChild(1).getStreamOperator();

if(childop.getOutputQueue() != this.getRightInputQueue())

throw new Exception("Error recomputing unmatched state!");

}

if(!(childop instanceof WBinaryJoinOperator)) {

throw new Exception("Error recomputing unmatched state!");

}

WOperatorState lstate = (WOperatorState)childop.getState()[0];

WOperatorState rstate = (WOperatorState)childop.getState()[1];

if(lstate.isMatched() && rstate.isMatched()) {

XATTuple[] rstatetuples = rstate.getAllStateTuples();

XATTuple[] joinedtuples;

joinedtuples = lstate.probe(rstatetuples, this.expression, 0);

((WOperatorState)states[1]).insertTuple(joinedtuples);

states[1].setMatched(true);

} else {

returnvalue = false;

}

}

} catch (Exception e) {

System.out.println("Something wrong when recomputing unmatched states. ");

e.printStackTrace();

return false;

}

return returnvalue;

}

/*

 * check if this operator has any unmatched states.

 * return: TRUE if this operator has unmatched states, FALSE otherwise.

 */

public boolean hasUnmatchedState() {

if (states == null) {

return false;

}

for (int i = 0; i < states.length; i++) {

if (!states[i].isMatched())

return true;

}

return false;

}

/*

 * Assign new ID to each state inside this operator, starting from the given startID.

 *

 * return the next available ID. For example, if startID is 2, and there are 2 states inside this operator,

 * then these two states are assigned new IDs as 2 and 3, and 4 is then returned as the next available stateID.

 */

 public int setStateID(int startID) {

if (states == null) {

return startID;

}

for(int i=0; i<states.length; i++) {

states[i].setStateID(startID);

startID++;

}

return startID;

 }

 public boolean matchStates(XATStreamOperator newboxoperator) {

int thisSize = this.states.length;

int thatSize = newboxoperator.getState().length;

OperatorState[] thatstates = newboxoperator.getState();

boolean hasmatchedstate = false;

for(int i=0; i<thisSize; i++) {

for(int j=0; j<thatSize; j++) {

// found a matched state

if(states[i].getStateID() == thatstates[j].getStateID()) {

thatstates[j].setMatched(true);

thatstates[j].copyStateContent(states[i]);

hasmatchedstate = true;

}

}

}

return hasmatchedstate;

 }

public boolean finalizeOperation(){

return true;

}

}
/*

 * Created on 2005-4-24

 *

 * TODO To change the template for this generated file go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

package edu.wpi.cs.dsrg.xmldb.xat.common.operator.replicatedparallelstreamoperator;

import edu.wpi.cs.dsrg.xmldb.xat.common.xatnode.XATNode;

import edu.wpi.cs.dsrg.xmldb.xat.common.dag.XATTuple;

import edu.wpi.cs.dsrg.xmldb.xat.common.dag.XATQueueSchema;

import edu.wpi.cs.dsrg.xmldb.xat.common.relationalstreamexpression.ExpressionStr;

import java.util.Vector;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.StreamSelectOperatorImp;

import edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.XATStreamOperator;

import edu.wpi.cs.dsrg.xmldb.xat.common.dag.XATCommandMsg;

import edu.wpi.cs.dsrg.xmldb.xat.common.xatnode.XATDataValue;

import edu.wpi.cs.dsrg.xmldb.xat.component.distribution.configuration.*;

import java.util.Calendar;

import java.util.GregorianCalendar;

/**

 * @author Mingzhu Wei

 *

 * TODO To change the template for this generated type comment go to

 * Window - Preferences - Java - Code Style - Code Templates

 */

public class ReplicationAwareStreamSelectOperatorImp extends

StreamSelectOperatorImp implements ReplicationAwareStreamSelectOperator {

private ExpressionStr expression;

boolean hastoken = false;

boolean firstrun = true;

String MachineName;

public ReplicationAwareStreamSelectOperatorImp(XATNode init) {

super(init);

}

public boolean run() throws Exception {

if(firstrun)

{

MachineName = System.getProperty("NAME");

if (MachineName.compareTo("Machine 1") == 0)

hastoken = true;

else

hastoken = false;

firstrun = false;

}

/**

 * first figure out how many tuples to dequeue, the selectivity, and

 * result delay

 */

XATQueueSchema inSchema;

int inLength;

if ((inSchema = this.getInputQueue().getSchema()) == null){

return false;

}

inLength = inSchema.getLength();

if(this.getOutputQueue().getSchema() == null){

init();

}

int howMany = Integer.parseInt(this.getProperty("NUMBER_OF_TUPLES_TO_DEQUEUE"));

/** get the tuples */

XATTuple[] tuples = this.getInputQueue().dequeue(howMany, this);

/** figure out how many tuples to keep*/

Vector tupleList = new Vector();

for (int i=0; i<tuples.length; i++) {

//Judge whether the current tuple is a Commandtype:

if (tuples[i].getObjTypeID()==208)

{

if (((XATCommandMsg)tuples[i]).getCommandType(0)==XATCommandMsg.PASS_TOKEN)

{

XATDataValue argsValue = ((XATCommandMsg)tuples[i]).getCommandArgs(0);

String tokenMachineName = argsValue.convertToString();

if (this.MachineName.equals(tokenMachineName))

{

this.hastoken = true;

GregorianCalendar Cal = new GregorianCalendar();

System.out.println("I got the token at time " + Cal.get(Calendar.HOUR_OF_DAY) + ":" + Cal.get(Calendar.MINUTE) + ":" + Cal.get(Calendar.SECOND));

}

else

this.hastoken = false;

}

}

else if (this.hastoken)

{

//if the operator has no token, then skip the

//tupleList.clear();

tupleList.add(0,tuples[i]);

Object out = expression.eval(tupleList, this);

if(out instanceof Boolean) {

if(((Boolean)out).booleanValue()) {

//XATTuple newtuple = new XATTupleImp()

this.getOutputQueue().enqueue(tuples[i], this);

}

}

}

}

return true;

}

/* (non-Javadoc)

 * @see edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.XATStreamOperator#toToolTipString()

 */

public String toToolTipString() {

// TODO Auto-generated method stub

return "Select";

}

/* (non-Javadoc)

 * @see edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.StreamSelectOperator#getExpression()

 */

public ExpressionStr getExpression() {

return expression;

}

/* (non-Javadoc)

 * @see edu.wpi.cs.dsrg.xmldb.xat.common.operator.streamoperator.StreamSelectOperator#setExpression(edu.wpi.cs.dsrg.xmldb.xat.common.streamexpression.ExpressionStr)

 */

public void setExpression(ExpressionStr expression) {

this.expression = expression;

}

/**

 * The method cleanAccumulatedTuples() is similar to the method run(),

 * except the way of figuring out how many tuples to dequeue from input queues.

 * Inside method run() the numbers are computed based on the property

 * "NUMBER_OF_TUPLES_TO_DEQUEUE" set by the system scheduler,

 * while in cleanAccumulatedTuples, all tuples in input queues that have their max timesamp

 * smaller than the given maxtimestamp should be dequened.

 */

public boolean cleanAccumulatedTuples(long maxtimestamp) {

return true;

}

/*

 * process all accumulated tuples in this operators' input queues.

 */

public boolean cleanAllAccumulatedTuples() {

return true;

}

/*

 * check if this operator has any unmatched states.

 * return: TRUE if this operator has unmatched states, FALSE otherwise.

 */

public boolean hasUnmatchedState() {

return false;

}

public boolean matchStates(XATStreamOperator op) {

return false;

}

public boolean recomputeUnmatchedState() {

return true;

}

public int setStateID(int nextid) {

return nextid;

}

public boolean finalizeOperation(){

return true;

}

}

Distribution configuration file:

<config>

<system>

<property name="StatisticsGatherer" value="on"/>

<property name="AVERAGE_WEIGHT" value=".875"/>

<property name="EXECUTION_CONTROLLER" value="edu.wpi.cs.dsrg.xmldb.xat.component.executioncontroller.DistributedExecutionController"/>

<property name="DATA_MODEL" value="edu.wpi.cs.dsrg.xmldb.xat.common.dag.XATMemoryQueueImp"/>

</system>

<distribution>

<property name="DISTRIBUTION_PATTERN" value="edu.wpi.cs.dsrg.xmldb.xat.component.distribution.pattern.RoundRobinPartitionDistribution"/>

<property name="WORKLOAD_COST_MODEL" value="edu.wpi.cs.dsrg.xmldb.xat.component.distribution.costmodel.NumTuplesInQueue"/>

<property name="REDISTRIBUTION_POLICY" value="edu.wpi.cs.dsrg.xmldb.xat.component.distribution.redistribution.Balance"/>

<property name="REDISBRIBUTION_TIME" value="15000"/>

<property name="DISTRIBUTION_DELAY" value="10000"/>

<property name="STATE_SIZE_THRESHOLD" value="-1"/>

<property name="REDISTRIBUTION_PERCENT" value="100"/>

<property name="REDISTRIBUTION_SCOPE" value="global"/>

</distribution>

<experiment>

<property name="EXECUTION_DURATION" value="300000"/>

<property name="PRINT_OUT_META_INFORMATION" value="true"/>

<property name="STREAM_CONFIG_FILE_NAME" value="resources\streamconfig\NetworkStreams-modified.xml"/>

<property name="STREAM_DURATION" value="300000"/>

<treeProperties/>

</experiment>

<machines>

<machine>

<property name="NAME" value="Machine 1"/>

<property name="HOST_ADDRESS" value="130.215.28.47"/>

<property name="PORT" value="8001"/>

<property name="TUPLE_RECEIVER_PORT" value="9001"/>

<property name="CONNECTION_LISTENER_PORT" value="10001"/>

<property name="ADAPTIVE_HEURISTIC" value="edu.wpi.cs.dsrg.xmldb.xat.component.scheduler.NeverRotateAdapter"/>

<property name="DEBUG" value="false"/>

<property name="UPDATE_OPERATOR_PROPERTY_FREQUENCY" value="1000"/>

<property name="UPDATE_TREE_PROPERTY_FREQUENCY" value="1000"/>

<property name="STATUS_CHECK_FREQUENCY" value="1000"/>

<property name="STATS_TABLE_STATS" value="false"/>

<property name="GUI" value="off"/>

<scheduling>

<property name="WORKLOAD_RATIO" value="1"/>

<property name="WORKLOAD_THRESHOLD" value="50"/>

<preferences>

<preference statistic="TOTAL_TUPLES_IN_QUEUES" quantifier="max" weight=".5"/>

<preference statistic="OUTPUT_RATE" quantifier="max" weight=".5"/>

</preferences>

<algorithms>

<property name="RoundRobin" value="edu.wpi.cs.dsrg.xmldb.xat.component.scheduler.RoundRobinScheduler"/>

</algorithms>

</scheduling>

</machine>

<machine>

<property name="NAME" value="Machine 2"/>

<property name="HOST_ADDRESS" value="130.215.29.35"/>

<property name="PORT" value="8002"/>

<property name="TUPLE_RECEIVER_PORT" value="9001"/>

<property name="CONNECTION_LISTENER_PORT" value="10001"/>

<property name="ADAPTIVE_HEURISTIC" value="edu.wpi.cs.dsrg.xmldb.xat.component.scheduler.NeverRotateAdapter"/>

<property name="DEBUG" value="false"/>

<property name="UPDATE_OPERATOR_PROPERTY_FREQUENCY" value="1000"/>

<property name="UPDATE_TREE_PROPERTY_FREQUENCY" value="1000"/>

<property name="STATUS_CHECK_FREQUENCY" value="1000"/>

<property name="STATS_TABLE_STATS" value="false"/>

<property name="GUI" value="off"/>

<scheduling>

<property name="WORKLOAD_RATIO" value="1"/>

<property name="WORKLOAD_THRESHOLD" value="50"/>

<preferences>

<preference statistic="TOTAL_TUPLES_IN_QUEUES" quantifier="max" weight=".5"/>

<preference statistic="OUTPUT_RATE" quantifier="max" weight=".5"/>

</preferences>

<algorithms>

<property name="RoundRobin" value="edu.wpi.cs.dsrg.xmldb.xat.component.scheduler.RoundRobinScheduler"/>

</algorithms>

</scheduling>

</machine>

</machines>

<QueryPlans>

<QueryPlan>

<property name="QUERY_ID" value="1"/>

<property name="edu.wpi.cs.dsrg.xmldb.xat.component.queryplangenerator" value="edu.wpi.cs.dsrg.xmldb.xat.component.queryplangenerator.DistributedFromXMLFileQueryPlanGenerator"/>

<property name="FILE_NAME" value="resources\queryplans\replicated_chain_plan.xml"/>

<property name="STREAMS" value="Tigris"/>

</QueryPlan>

</QueryPlans>

<Applications>

<Application>

<property name="HOST_ADDRESS" value="130.215.28.47"/>

<property name="PORT" value="16001"/>

<property name="CONNECTS_TO" value="1"/>

</Application>

</Applications>

<!-- the format of the output, either

 XML, HTML, or CSV. The columnNames correspond to the columns to

include in the print out. There is no need to set a value for this attribute.

FREQUENCY is how often, in milleseconds, that the printout will occur

NUMBER_OF_PRINTOUTS is self explanitory.

 Note: either of these can be left out if desired. If the

 number_of_times_to_printout is omitted, it will just print out

 for the entire application. If frequency is omitted, it will

 just print out at the end of execution

 Note 2: setting the frequency too high (less than 5 seconds) will severely

 degrade performance because the printer locks the staticsgatherer each time.

 While the operators run in a separte thread, the execution controller and

 scheduler would block until printer is done.

-->

<outputFormat>

<property name="FORMAT" value="csv"/>

<property name="FILE_NAME" value="NoDist_GUI_local_1machine_QM_Test.csv"/>

<property name="PRINT_EMPTY_ROW" value="false"/>

<property name="ALWAYS_PRINT_HEADERS" value="false"/>

<property name="OVERALL_FILENAME" value="QMTest.csv"/>

<property name="ALWAYS_PRINT_OVERALL" value="false"/>

<property name="FREQUENCY" value="5000"/>

<outputColumnNames>

<property name="SELECTIVITY" value=""/>

<property name="REDUCTION_FACTOR" value=""/>

<property name="TOTAL_TUPLES_IN_QUEUES" value="AVERAGE"/>

<property name="OUTPUT_RATE" value="AVERAGE"/>

<property name="THROUGHPUT" value=""/>

<property name="AVERAGE_TUPLE_DELAY" value="AVERAGE"/>

<property name="NUMBER_OF_TIMES_RUN" value=""/>

</outputColumnNames>

</outputFormat>

<!-- Some of the Statistics to Gather. It is important that the

 everyTimeOperator properties are kept in tact (including order).

 Altering the order or makeup could result in either.

1. a scheduler not working correctly

2. another propert not being updated correctly

 The value wont be used, but it keeps it consistent with the rest of the document

 If a property appears in the printout (above), then it should

 be listed here.

 The 2nd group of properties is optional metrics.

 Not all properties can be specified here because some rely on outside

 information.

 The everyTimeOperator element contains properties that are updated after every

 time an operator runs. The periodicOperator element lists all properties

 that can be updated at regular intervals (defined as UPDATE_PROPERTY_FREQUENCY property).

 -->

<statisticsToGather>

<operatorStatistics>

<everyTimeTree>

<!--

 I cant think of any tree properties that would need to be updated every time

 so this isnt supported

 -->

</everyTimeTree>

<periodicTree>

<property name="THROUGHPUT" value=""/>

<property name="OUTPUT_RATE" value=""/>

<property name="NUMBER_OF_TIMES_OPERATORS_WERE_RUN" value=""/>

<property name="TOTAL_TUPLES_IN_QUEUES" value=""/>

<property name="AVERAGE_TUPLE_DELAY" value=""/>

<property name="NUMBER_OF_TIMES_OPERATORS_WERE_RUN" value=""/>

</periodicTree>

<everyTimeOperator>

<!-- These properties are updated every time an operator runs

<property name = "NUMBER_OF_TUPLES_OUTPUTTED_TOTAL" value = ""/>

 -->

<property name="NUMBER_OF_TIMES_RUN" value=""/>

<property name="NUMBER_OF_TUPLES_IN_OUTPUT_QUEUES" value=""/>

<property name="NUMBER_OF_TUPLES_IN_INPUT_QUEUES" value=""/>

<property name="NUMBER_OF_TUPLES_DEQUEUED_TOTAL" value=""/>

<property name="NUMBER_OF_TUPLES_DEQUEUED" value=""/>

<property name="NUMBER_OF_POSSIBLE_OUTPUTS" value=""/>

<property name="TIME_TOOK_TO_RUN_TOTAL" value=""/>

</everyTimeOperator>

<periodicOperator>

<!-- These properties will be updated at regular intervals -->

<property name="SELECTIVITY" value=""/>

<property name="REDUCTION_FACTOR" value=""/>

<property name="AVERAGE_TUPLE_PROCESSING_TIME" value=""/>

<property name="GREEDY_PRIORITY" value=""/>

<property name="AVERAGE_OUTPUT_RATE" value=""/>

</periodicOperator>

<everyTimeSystem>

<property name="USED_MEMORY" value=""/>

<property name="FREE_MEMORY" value=""/>

<property name="TOTAL_MEMORY" value=""/>

<property name="USED_MEMORY_PERCENTAGE" value=""/>

</everyTimeSystem>

</operatorStatistics>

</statisticsToGather>

</config>

PAGE
11

