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So Far...

e Dealt with straight lines and flat surfaces
e Real world objects include curves

e Need to develop:
Representations of curves
Tools to render curves




Curve Representation: Explicit

e One variable expressed in terms of another
e Example:

z=1(x,y)

e Works if one x-value for each y value
e Example: does not work for a sphere

z:\/x2+y2

e Rarely used in CG because of this limitation




Curve Representation: Implicit

e Represent 2D curve or 3D surface as zeros of a formula
e Example: sphere representation

X°+y°+2°-1=0

e May limit classes of functions used

e Polynomial: function which can be expressed as linear
combination of integer powers of x, y, z

e Degree of algebraic function: highest power in function
e Example: mx* has degree of 4



Curve Representation: Parametric

e Represent 2D curve as 2 functions, 1 parameter

(X(u), y(u))
e 3D surface as 3 functions, 2 parameters

(x(u,v), y(u,v), z(u,v))

e Example: parametric sphere
X(6,¢) =cos¢gcosd
y(@,¢) =cosgsing
2(6,¢) =sing



Choosing Representations

e Different representation suitable for different
applications

e Implicit representations good for:
Computing ray intersection with surface
Determing if point is inside/outside a surface

e Parametric representation good for:

Breaking surface into small polygonal elements for
rendering

Subdivide into smaller patches

e Sometimes possible to convert one representation
into another



Continuity

e Consider parametric curve

P(u) = (x(u), y(u), z(u))’

e We would like smoothest curves possible

e Mathematically express smoothness as continuity (no
jumps)

e Defn: if kth derivatives exist, and are continuous,
curve has kth order parametric continuity denoted Ck



Continuity

e Oth order means curve is continuous

e 15t order means curve tangent vectors vary
continuously, etc
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Interactive Curve Design

e Mathematical formula unsuitable for designers

e Prefer to interactively give sequence of points
(control points)

e Write procedure:
Input: sequence of points
Output: parametric representation of curve



Interactive Curve Design

e 1 approach: curves pass through control points (interpolate)
e Example: Lagrangian Interpolating Polynomial
e Difficulty with this approach:

Polynomials always have “wiggles”
For straight lines wiggling is a problem

e Our approach: approximate control points (Bezier, B-Splines)
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De Casteljau Algorithm

e Consider smooth curve that approximates
sequence of control points [p0,p1,....]

p(u) =1-u)p, +up, O<u<l

e Blending functions: u and (1 — u) are non-
negative and sum to one



De Casteljau Algorithm -

e Now consider 3 points
e 2 line segments, PO to P1 and P1 to P2

p01(u) — (1—U) po + upl pll(u) — (1—U) pl + upz

ppglul
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De Casteljau Algorithm -

p(u) — (1_ U) Por + upll(u)
= (1-u)*py + (2u(l-u)) p, +u’p,

Example: Bezier curves with 3, 4 control points
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De Casteljau Algorithm

Blending functions for degree 2 Bezier curve

b (U)=(1—u)®>  by(u)=2u(-u)  by(u)=u’

Note: blending functions, non-negative, sum to 1



De Casteljau Algorithm

e Extend to 4 points PO, P1, P2, P3

p(u) = (@—u)’p, +(Bu-u)’ p, + (Bu*(L-u)) p, +u°

e Repeated interpolation is De Casteljau algorithm
e Final result above is Bezier curve of degree 3



De Casteljau Algorithm

e Blending functions for 4 points

e These polynomial functions called Bernstein’s
polynomials

093 (U) = (1_U)3
0,5(U) = 3”(1_U)2
,,(U) =3u’(1-u)

0,5(U) = u’




De Casteljau Algorithm

e Writing coefficient of blending functions gives
Pascal’s triangle

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

In general, blending function for k Bezier curve has form

K .
0y, (U) :(ij(l_u) u



De Casteljau Algorithm

e Can express cubic parametric curve in matrix

form

p(u) =[Lu,u®,U*IM,
where )
1 0 0O O
-3 3 0 O
M; =
3 -6 3 0
_—1 3 -3 1

Po
P
P>
Ps




Subdividing Bezier Curves

e OpenGL renders flat objects

e To render curves, approximate by small linear
segments

e Subdivide surface to polygonal patches

e Bezier curves useful for elegant, recursive
subdivision



Subdividing Bezier Curves

e Let (PO... P3) denote original sequence of control points
e Relabel these points as (P0O.... P30)
e Repeat interpolation (u =) and label vertices as below

e Sequences (P00,P01,P02,P03) and (P0O3,P12,P21,30) define
Bezier curves also

e Bezier Curves can either be straightened or curved recursively
in this way

P i P



Bezier Surfaces

e Bezier surfaces: interpolate in two dimensions
e This called Bilinear interpolation

e Example: 4 control points, P00, PO1, P10, P11, 2 parameters u
and v

e Interpolate between
POO and P01 using u
P10 and P11 using u
POO and P10 using v
PO1 and P11 using v

p(u,v) = (1=V)((1~U) Pg +UPg, ) +V((L—U) Py +UPy,)



Bezier Surfaces

e Recalling, (1-u) and u are first-degree Bezier
blending functions b0,1(u) and b1,1(u)

p(u J V) — bOl (V) bOl (u) pOO + bOl (V) b11b01 (u) pOl T bll (V) bll (u) pll

Generalizing

p(U’V) — ZZbi,3(V)bj,3(u) Pi;

i=0 j=0




B-Splines

e Bezier curves are elegant but too many control points

e Smoother = more control points = higher order polynomial
e B-splines designed to address Bezier shortcomings

e B-Spline given by blending control points

e Each spline contributes in limited range
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B-spline blending functions, order 2



NURBS

e Encompasses both Bezier curves/surfaces and B-splines
e Non-uniform Rational B-splines (NURBS)
e Rational function is ratio of two polynomials

e Some curves can be expressed as rational functions but not as
simple polynomials

e No known exact polynomial for circle

e Rational parametrization of unit circle on xy-plane:

1—u?

X(Uu) =
() 1+u®
2U

u —
y(u) 1+u?®

Z(u)=0



NURBS

e We can apply homogeneous coordinates to bring in w

x(u) =1-u?
y(u)=2u
z(u)=0
w(u) =1+u’

e Using w, we get we cleanly integrate rational parametrization
e Useful property of NURBS: preserved under transformation
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