Computer Graphics CS 543 – Lecture 12 (Part 1) Curves

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

So Far...

- Dealt with straight lines and flat surfaces
- Real world objects include curves
- Need to develop:
 - Representations of curves
 - Tools to render curves

Curve Representation: Explicit

- One variable expressed in terms of another
- Example:

$$z = f(x, y)$$

- Works if one x-value for each y value
- Example: does not work for a sphere

$$z = \sqrt{x^2 + y^2}$$

Rarely used in CG because of this limitation

Curve Representation: Implicit

- Represent 2D curve or 3D surface as zeros of a formula
- Example: sphere representation

$$x^2 + y^2 + z^2 - 1 = 0$$

- May limit classes of functions used
- Polynomial: function which can be expressed as linear combination of integer powers of x, y, z
- Degree of algebraic function: highest power in function
- Example: mx⁴ has degree of 4

Curve Representation: Parametric

Represent 2D curve as 2 functions, 1 parameter

3D surface as 3 functions, 2 parameters

Example: parametric sphere

$$x(\theta, \phi) = \cos \phi \cos \theta$$
$$y(\theta, \phi) = \cos \phi \sin \theta$$
$$z(\theta, \phi) = \sin \phi$$

Choosing Representations

- Different representation suitable for different applications
- Implicit representations good for:
 - Computing ray intersection with surface
 - Determing if point is inside/outside a surface
- Parametric representation good for:
 - Breaking surface into small polygonal elements for rendering
 - Subdivide into smaller patches
- Sometimes possible to convert one representation into another

Continuity

Consider parametric curve

$$P(u) = (x(u), y(u), z(u))^{T}$$

- We would like smoothest curves possible
- Mathematically express smoothness as continuity (no jumps)
- Defn: if kth derivatives exist, and are continuous, curve has kth order parametric continuity denoted C^k

Continuity

- 0th order means curve is continuous
- 1st order means curve tangent vectors vary continuously, etc

Interactive Curve Design

- Mathematical formula unsuitable for designers
- Prefer to interactively give sequence of points (control points)
- Write procedure:
 - Input: sequence of points
 - Output: parametric representation of curve

Interactive Curve Design

- 1 approach: curves pass through control points (interpolate)
- Example: Lagrangian Interpolating Polynomial
- Difficulty with this approach:
 - Polynomials always have "wiggles"
 - For straight lines wiggling is a problem
- Our approach: approximate control points (Bezier, B-Splines)

 Consider smooth curve that approximates sequence of control points [p0,p1,....]

$$p(u) = (1-u)p_0 + up_1 0 \le u \le 1$$

 Blending functions: u and (1 – u) are nonnegative and sum to one

- Now consider 3 points
- 2 line segments, P0 to P1 and P1 to P2

$$p_{01}(u) = (1-u)p_0 + up_1$$
 $p_{11}(u) = (1-u)p_1 + up_2$

$$p_{11}(u) = (1-u)p_1 + up_2$$

$$p(u) = (1-u) p_{01} + u p_{11}(u)$$
$$= (1-u)^2 p_0 + (2u(1-u)) p_1 + u^2 p_2$$

Example: Bezier curves with 3, 4 control points

Blending functions for degree 2 Bezier curve

$$b_{02}(u) = (1-u)^2$$
 $b_{12}(u) = 2u(1-u)$ $b_{22}(u) = u^2$

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

Extend to 4 points P0, P1, P2, P3

$$p(u) = (1-u)^3 p_0 + (3u(1-u)^2 p_1 + (3u^2(1-u)) p_2 + u^3$$

- Repeated interpolation is De Casteljau algorithm
- Final result above is Bezier curve of degree 3

- Blending functions for 4 points
- These polynomial functions called Bernstein's polynomials

$$b_{03}(u) = (1-u)^3$$

$$b_{13}(u) = 3u(1-u)^2$$

$$b_{23}(u) = 3u^2(1-u)$$

$$b_{33}(u) = u^3$$

Writing coefficient of blending functions gives
 Pascal's triangle

In general, blending function for k Bezier curve has form

$$b_{ik}(u) = \binom{k}{i} (1-u)^{k-i} u^{i}$$

De Casteljau Algorithm

• Can express cubic parametric curve in matrix form $\lceil p_0 \rceil$

$$p(u) = [1, u, u^2, u^3] M_B \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

where

$$M_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Subdividing Bezier Curves

- OpenGL renders flat objects
- To render curves, approximate by small linear segments
- Subdivide surface to polygonal patches
- Bezier curves useful for elegant, recursive subdivision

- Let (P0... P3) denote original sequence of control points
- Relabel these points as (P00.... P30)
- Repeat interpolation ($u = \frac{1}{2}$) and label vertices as below
- Sequences (P00,P01,P02,P03) and (P03,P12,P21,30) define Bezier curves also
- Bezier Curves can either be straightened or curved recursively in this way

Bezier Surfaces

- Bezier surfaces: interpolate in two dimensions
- This called Bilinear interpolation
- Example: 4 control points, P00, P01, P10, P11, 2 parameters u and v
- Interpolate between
 - P00 and P01 using u
 - P10 and P11 using u
 - P00 and P10 using v
 - P01 and P11 using v

$$p(u,v) = (1-v)((1-u)p_{00} + up_{01}) + v((1-u)p_{10} + up_{11})$$

Bezier Surfaces

 Recalling, (1-u) and u are first-degree Bezier blending functions b0,1(u) and b1,1(u)

$$p(u,v) = b_{01}(v)b_{01}(u)p_{00} + b_{01}(v)b_{11}b_{01}(u)p_{01} + b_{11}(v)b_{11}(u)p_{11}$$

Generalizing

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_{i,3}(v) b_{j,3}(u) p_{i,j}$$

B-Splines

- Bezier curves are elegant but too many control points
- Smoother = more control points = higher order polynomial
- B-splines designed to address Bezier shortcomings
- B-Spline given by blending control points
- Each spline contributes in limited range

$$p(u) = \sum_{i=0}^{m} B_i(u) p_i$$

B-spline blending functions, order 2

- Encompasses both Bezier curves/surfaces and B-splines
- Non-uniform Rational B-splines (NURBS)
- Rational function is ratio of two polynomials
- Some curves can be expressed as rational functions but not as simple polynomials
- No known exact polynomial for circle
- Rational parametrization of unit circle on xy-plane:

$$x(u) = \frac{1 - u^2}{1 + u^2}$$
$$y(u) = \frac{2u}{1 + u^2}$$
$$z(u) = 0$$

NURBS

We can apply homogeneous coordinates to bring in w

$$x(u) = 1 - u^{2}$$

$$y(u) = 2u$$

$$z(u) = 0$$

$$w(u) = 1 + u^{2}$$

- Using w, we get we cleanly integrate rational parametrization
- Useful property of NURBS: preserved under transformation

References

- Hill and Kelley, chapter 11
- Angel and Shreiner, Interactive Computer Graphics, 6th edition

References

 Angel and Shreiner, Interactive Computer Graphics (6th edition), Chapter 8