
Computer Graphics (CS 543)
Lecture 4 (Part 3): Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Instance Transformation

 Start with unique object (a symbol)

 Each appearance of object in model is an instance

 Must scale, orient, position

 Defines instance transformation

Symbol

Instance

Symbol-Instance Table

Can store intances + instance transformations

Problems with Symbol-Instance Table

 Symbol-instance table does not show relationships
between parts of model

 Consider model of car
 Chassis (body) + 4 identical wheels

 Two symbols

 Relationships:
 Wheels connected to chassis

 Chassis motion determined by rotational speed of wheels

5

Structure Program Using Function Calls?

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

 Fails to show relationships between parts
 Explore graph representation

Chassis

Left front

wheel

Left back

wheel

6

Graphs

 Set of nodes + edges (links)

 Edge connects a pair of nodes

 Directed or undirected

 Cycle: directed path that is a loop

loop

edge

node

7

Tree

 Graph in which each node (except root) has exactly
one parent node

 A parent may have multiple children

 Leaf node: no children

root node

leaf node

8

Tree Model of Car

Hierarchical Transforms

 Robot arm: Many small connected parts

 Attributes (position, orientation, etc) depend on
each other

base

lower arm

hammer

A Robot Hammer!

Upper arm

Hierarchical Transforms

 Object dependency description using tree
structure

Base

Lower arm

Upper arm

Hammer

Root node

Leaf node

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
… nodes

Hierarchical representation is

known as a Scene Graph

Transformations

 Two ways to specify transformations:

 (1) Absolute transformation: each part transformed
independently (relative to origin)

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);
…

x
z

y

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify transformation for
each object relative to its parent

Step 1: Translate base and
its child nodes by (5,0,0);

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

x
z

y

x

z

y

Relative Transformation

 Relative transformation using scene graph

Base

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down Apply all the way

down

Hierarchical Transforms Using OpenGL

 Translate base and all its descendants by (5,0,0)

 Rotate lower arm and its descendants by -90 degree about
local y

Base

Lower arm

Upper arm

Hammer

ctm = LoadIdentity();

… // setup your camera

ctm = ctm * Translatef(5,0,0);

Draw_base();

ctm = ctm * Rotatef(-90, 0, 1, 0);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

Hierarchical Modeling

 For large objects with many parts, need to transform
groups of objects

 Need better tools

Torso

Lower arm

Upper arm

Upper leg

Lower leg

Hierarchical Modeling

 Previous CTM had 1 level

 Hierarchical modeling: extend CTM to stack with
multiple levels using linked list

 Manipulate stack levels using 2 operations

 pushMatrix

 popMatrix

1000

0300

0020

0001

Current top

Of CTM stack

PushMatrix

 PushMatrix(): Save current modelview matrix (CTM) in stack

 Positions 1 & 2 in linked list are same after PushMatrix

1000

0300

0020

0001

Current top

Of CTM stack

1000

0300

0020

0001

Current top

Of CTM stack

Before PushMatrix After PushMatrix

1000

0300

0020

0001

Saved copy of

matrix at CTM top

PushMatrix

 Further Rotate, Scale, Translate affect only top matrix

 E.g. ctm = ctm * Translate (3,8,6)

1000

0300

0020

0001

Translate(3,8,6) applied

only to current top

Of CTM stack

After PushMatrix

1000

0300

0020

0001

1000

6100

8010

3001

Matrix in second position saved.

Unaffected by Translate(3,8,6)

PopMatrix

 PopMatrix(): Delete position 1 matrix, position 2 matrix
becomes top

1000

0300

0020

0001

Current top

Of CTM stack

1000

0360

0220

0451

Before PopMatrix

1000

0300

0020

0001

Current top

Of CTM stack

After PopMatrix

Delete this matrix

Ref: Computer Graphics
Through OpenGL by Guha

• Note: Diagram uses old glTranslate,

glScale, etc commands

• We want same behavior though

Apply matrix at top of CTM to

vertices of object created

PopMatrix and
PushMatrix
Illustration

22

Humanoid Figure

Torso

Lower arm

Upper arm

Upper leg

Lower leg

23

Building the Model

 Draw each part as a function
 torso()

 left_upper_arm(), etc

 Transform Matrices: transform
of node wrt its parent

 Mlla positions left lower arm with
respect to left upper arm

 Stack based traversal (push, pop)

Lower arm

Upper arm

Mlla

24

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

save present model-view matrix

draw torso

25

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

(Mh) Transformation of head

Relative to torso

draw head

26

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

……..

// rest of code()

draw left-upper arm

(Mlua) Transformation(s) of left

upper arm relative to torso

Go back to torso matrix,

and save it again

Complete Humanoid Tree with Matrices

Scene graph of Humanoid Robot

28

VRML
 Scene graph introduced by SGI Open Inventor

 Used in many graphics applications (Maya, etc)

 Virtual Reality Markup Language

 Scene graph representation of virtual worlds on Web

 Scene parts can be distributed across multiple web servers

 Implemented using OpenGL

References

 Angel and Shreiner, Interactive Computer Graphics
(6th edition), Chapter 8

Exam 1 Next Week

Exam 1 Overview

 Tuesday, February 14, in-class

 Will cover up to lecture 4 (hierarchical transforms)

 Can bring:

 One page cheat-sheet, hand-written (not typed)

 Calculator

 Will test:

 Theoretical concepts

 Mathematics

 Algorithms

 Programming

 OpenGL/GLSL knowledge (program structure and some
commands)

What am I Really Testing?

 Understanding of

 concepts (NOT only programming)

 programming (pseudocode/syntax)

 Test that:

 you can plug in numbers by hand to check your
programs

 you did the projects

 you understand what you did in projects

General Advise

 Read your projects and refresh memory of what you did

 Read the slides: worst case – if you understand slides, you’re
more than 50% prepared

 Try to predict subtle changes to algorithm.. What ifs?..

 Past exams: One sample midterm is on website

 All lectures have references. Look at refs to focus reading

 Do all readings I asked you to do on your own

Grading Policy

 I try to give as much partial credit as possible

 In time constraints, laying out outline of solution
gets you healthy chunk of points

 Try to write something for each question

 Many questions will be easy, exponentially harder to
score higher in exam

Introduction

 Motivation for CG

 Uses of CG (simulation, image processing, movies, viz, etc)

 Elements of CG (polylines, raster images, filled regions, etc)

 Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

 High-level:

 What is OpenGL?

 What is GLUT?

 What is GLSL

 Functionality, how do they work together?

 Sequential Vs. Event-driven programming

 OpenGL/GLUT program structure (create window, init,
callback registration, etc)

 GLUT callback functions (registration and response to events)

OpenGL Drawing

 Vertex Buffer Objects

 glDrawArrays

 OpenGL :

 Drawing primitives: GL_POINTS, GL_LINES, etc (should be
conversant with the behaviors of major primitives)

 Data types

 Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)

 OpenGL state

 GLSL Command format/syntax

 Vertex and fragments shaders

 Shader setup, How GLSL works

2D Graphics: Coordinate Systems

 Screen coordinate system/Viewport

 World coordinate system/World window

 Setting Viewport

 Tiling, aspect ratio

Fractals

 What are fractals?

 Self similarity

 Applications (clouds, grass, terrain etc)

 Mandelbrot set

 Complex numbers: s, c, orbits, complex number math

 Dwell function

 Assigning colors

 Mapping mandelbrot to screen

 Koch curves, gingerbread man, hilbert transforms

Points, Scalars Vectors

 Vector Operations:

 Addition, subtraction, scaling

 Magnitude

 Normalization

 Dot product

 Cross product

 Finding angle between two vectors

 Finding normal of plane using cross product,
Newell method

Transforms
 Homogeneous coordinates Vs. Ordinary coordinates

 2D/3D affine transforms: rotation, scaling, translation, shearing

 Should be able to take problem description and build
transforms and apply to vertices

 2D: rotation (scaling, etc) about arbitrary center:

 T(Px,Py) R() T(-Px,-Py) * P

 Composing transforms

 3D rotation:

 x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if
given azimuth, latitude of vector or (x, y, z) of normalized
vector

 Matrix multiplication!!

 Hierarchical transforms!!

Building 3D Models

 Drawing Polygonal meshes

 Edge list

 Vertex List

