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Instance Transformation

 Start with unique object (a symbol)

 Each appearance of object in model is an instance

 Must scale, orient, position

 Defines instance transformation

Symbol

Instance



Symbol-Instance Table

Can store intances + instance transformations



Problems with Symbol-Instance Table

 Symbol-instance table does not show relationships 
between parts of model

 Consider model of car
 Chassis (body) + 4  identical wheels

 Two symbols

 Relationships: 
 Wheels connected to chassis

 Chassis motion determined by rotational speed of wheels
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Structure Program Using Function Calls?

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

 Fails to show relationships between parts
 Explore graph representation

Chassis

Left front

wheel

Left back

wheel
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Graphs

 Set of nodes + edges (links)

 Edge connects a pair of nodes

 Directed or undirected

 Cycle: directed path that is a loop

loop

edge

node
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Tree

 Graph in which each node (except root) has exactly 
one parent node

 A parent may have multiple children

 Leaf node: no children

root node

leaf node
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Tree Model of Car



Hierarchical Transforms

 Robot arm: Many small connected parts

 Attributes (position, orientation, etc) depend on 
each other

base

lower arm 

hammer

A Robot Hammer!

Upper arm 



Hierarchical Transforms

 Object dependency description using tree 
structure

Base

Lower arm 

Upper arm 

Hammer

Root node

Leaf node

Object position and orientation  
can be affected by its parent, 
grand-parent, grand-grand-parent 
… nodes 

Hierarchical representation is

known as a Scene Graph



Transformations

 Two ways to specify transformations:

 (1) Absolute transformation: each part transformed 
independently (relative to origin)

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0); 
Translate the upper arm by (5,0,0); 
… 

x
z

y



Relative Transformation

A better (and easier) way: 

(2) Relative transformation: Specify transformation for 
each object relative to its parent

Step 1: Translate base and 
its child nodes by (5,0,0); 



Relative Transformation

Step 2: Rotate the  lower arm and all its descendants
relative to the base’s local y axis by -90 degree

x
z

y

x

z

y



Relative Transformation

 Relative transformation using scene graph

Base

Lower arm 

Upper arm 

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down Apply all the way 

down 



Hierarchical Transforms Using OpenGL

 Translate base and all its descendants by (5,0,0)

 Rotate lower arm and its descendants by -90 degree about  
local y

Base

Lower arm 

Upper arm 

Hammer

ctm = LoadIdentity(); 

… // setup your camera

ctm = ctm * Translatef(5,0,0); 

Draw_base(); 

ctm = ctm * Rotatef(-90, 0, 1, 0); 

Draw_lower _arm();
Draw_upper_arm(); 
Draw_hammer();  



Hierarchical Modeling

 For large objects with many parts, need to transform 
groups of objects

 Need better tools

Torso

Lower arm

Upper arm

Upper leg

Lower leg



Hierarchical Modeling

 Previous CTM had 1 level

 Hierarchical modeling: extend CTM to stack with 
multiple levels using linked list

 Manipulate stack levels using 2 operations

 pushMatrix

 popMatrix





















1000

0300

0020

0001

Current top

Of CTM stack



PushMatrix

 PushMatrix( ): Save current modelview matrix (CTM) in stack

 Positions 1 & 2 in linked list are same after PushMatrix





















1000

0300

0020

0001

Current top

Of CTM stack





















1000

0300

0020

0001

Current top

Of CTM stack

Before PushMatrix After PushMatrix





















1000

0300

0020

0001

Saved copy of 

matrix at CTM top



PushMatrix

 Further Rotate, Scale, Translate affect only top matrix

 E.g. ctm = ctm * Translate (3,8,6)





















1000

0300

0020

0001

Translate(3,8,6) applied

only to current top

Of CTM stack

After PushMatrix




















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0300

0020

0001





















1000

6100

8010

3001

Matrix in second position saved.

Unaffected by Translate(3,8,6)



PopMatrix

 PopMatrix( ): Delete position 1 matrix, position 2 matrix 
becomes top





















1000

0300

0020
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Current top

Of CTM stack





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








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0451

Before PopMatrix


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

















1000

0300

0020

0001

Current top

Of CTM stack

After PopMatrix

Delete this matrix



Ref: Computer Graphics
Through OpenGL by Guha

• Note: Diagram uses old glTranslate,

glScale, etc commands

• We want same behavior though

Apply matrix at top of CTM to

vertices of object created

PopMatrix and 
PushMatrix 
Illustration
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Humanoid Figure

Torso

Lower arm

Upper arm

Upper leg

Lower leg



23

Building the Model

 Draw each part as a function
 torso()

 left_upper_arm(), etc

 Transform Matrices: transform 
of node wrt its parent

 Mlla positions left lower arm with 
respect to left upper arm

 Stack based traversal (push, pop)

Lower arm

Upper arm

Mlla
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Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

save present model-view matrix

draw torso
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Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

(Mh) Transformation of head

Relative to torso

draw head
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Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

……..

// rest of code()

draw left-upper arm

(Mlua) Transformation(s) of left 

upper arm relative to torso

Go back to torso matrix, 

and save it again



Complete Humanoid Tree with Matrices

Scene graph of Humanoid Robot
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VRML
 Scene graph introduced by SGI Open Inventor

 Used in many graphics applications (Maya, etc)

 Virtual Reality Markup Language

 Scene graph representation of virtual worlds on Web

 Scene parts can be distributed across multiple web servers 

 Implemented using OpenGL



References

 Angel and Shreiner, Interactive Computer Graphics 
(6th edition), Chapter 8



Exam 1 Next Week



Exam 1 Overview

 Tuesday, February 14, in-class

 Will cover up to lecture 4 (hierarchical transforms)

 Can bring:

 One page cheat-sheet, hand-written (not typed)

 Calculator

 Will test:

 Theoretical concepts

 Mathematics

 Algorithms

 Programming

 OpenGL/GLSL knowledge (program structure and some 
commands)



What am I Really Testing?

 Understanding of 

 concepts (NOT only programming)

 programming (pseudocode/syntax)

 Test that: 

 you can plug in numbers by hand to check your 
programs

 you did the projects

 you understand what you did in projects



General Advise

 Read your projects and refresh memory of what you did

 Read the slides: worst case – if you understand slides, you’re 
more than 50% prepared

 Try to predict subtle changes to algorithm.. What ifs?..

 Past exams: One sample midterm is on website

 All lectures have references. Look at refs to focus reading

 Do all readings I asked you to do on your own



Grading Policy

 I try to give as much partial credit as possible

 In time constraints, laying out outline of solution 
gets you healthy chunk of points

 Try to write something for each question

 Many questions will be easy, exponentially harder to 
score higher in exam



Introduction

 Motivation for CG

 Uses of CG (simulation, image processing, movies, viz, etc)

 Elements of CG (polylines, raster images, filled regions, etc)

 Device dependent graphics libraries (OpenGL, DirectX, etc)



OpenGL/GLUT

 High-level: 

 What is OpenGL?

 What is GLUT?

 What is GLSL

 Functionality, how do they work together?

 Sequential Vs. Event-driven programming

 OpenGL/GLUT program structure (create window, init, 
callback registration, etc)

 GLUT callback functions (registration and response to events)



OpenGL Drawing

 Vertex Buffer Objects

 glDrawArrays

 OpenGL :

 Drawing primitives: GL_POINTS, GL_LINES, etc (should be 
conversant with the behaviors of major primitives)

 Data types

 Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)

 OpenGL state

 GLSL Command format/syntax

 Vertex and fragments shaders

 Shader setup, How GLSL works



2D Graphics: Coordinate Systems

 Screen coordinate system/Viewport

 World coordinate system/World window

 Setting Viewport

 Tiling, aspect ratio



Fractals

 What are fractals?

 Self similarity

 Applications (clouds, grass, terrain etc)

 Mandelbrot set

 Complex numbers: s, c, orbits, complex number  math

 Dwell function

 Assigning colors

 Mapping mandelbrot to screen

 Koch curves, gingerbread man, hilbert transforms



Points, Scalars Vectors

 Vector Operations:

 Addition, subtraction, scaling

 Magnitude

 Normalization

 Dot product

 Cross product

 Finding angle between two vectors

 Finding normal of plane using cross product, 
Newell method



Transforms
 Homogeneous coordinates Vs. Ordinary coordinates

 2D/3D affine transforms: rotation, scaling, translation, shearing

 Should be able to take problem description and build 
transforms and apply to vertices

 2D: rotation (scaling, etc) about arbitrary center: 

 T(Px,Py) R() T(-Px,-Py) * P

 Composing transforms

 3D rotation: 

 x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if 
given azimuth, latitude of vector or (x, y, z) of normalized 
vector

 Matrix multiplication!!

 Hierarchical transforms!!



Building 3D Models

 Drawing Polygonal meshes

 Edge list 

 Vertex List


