Computer Graphics (CS 543)
Lecture 4 (Part 3): Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Instance Transformation

e Start with unique object (a symbol)

e Each appearance of object in model is an instance
e Must scale, orient, position
e Defines instance transformation

Instance
Symbol

Symbol-Instance Table

Can store intances + instance transformations

Symbol

Scale

Rotate

Translate

1
2
3
1
1

dy, d,, d,

Problems with Symbol-Instance Table

e Symbol-instance table does not show relationships
between parts of model

e Consider model of car
Chassis (body) + 4 identical wheels
Two symbols

©)
\>

e Relationships:
Wheels connected to chassis
Chassis motion determined by rotational speed of wheels

Structure Program Using Function Calls?

car (speed)

{ . Chassis
chassis ()
wheel (right front) ;
wheel (left front);
wheel (right rear);
wheel (left rear);
- Left front Left back

} wheel wheel

e Fails to show relationships between parts
e Explore graph representation

5

Graphs :

e Set of nodes + edges (links)
e Edge connects a pair of nodes

e Directed or undirected

e Cycle: directed path thatis a loop

/

Tree

e Graph in which each node (except root) has exactly
one parent node

A parent may have multiple children
Leaf node: no children

O T root node

O/C\) \ O— leaf node

Tree Model of Car

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

000
X X J
(| X J
o

Hierarchical Transforms

e Robot arm: Many small connected parts

e Attributes (position, orientation, etc) depend on

each other
AROBOT HAMMER!
- / hammer x
Upper arm

)& T
lower arm —) —
< base

Hierarchical Transforms

e Object dependency description using tree

structure

Root node

Base

l

Lower arm

l

Upper arm

Leaf node

l

Hammer

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
... hodes

Hierarchical representation is
known as a Scene Graph

Transformations

e Two ways to specify transformations:

e (1) Absolute transformation: each part transformed
independently (relative to origin)

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify transformation for
each object relative to its parent

—7 Step 1: Translate base and —
its child nodes by (5,0,0); ————

Bl =~

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

— R

VN
ol

Relative Transformation

e Relative transformation using scene graph

Base {-----------

l

-

Lower arm |------

l

Upper arm

l

Hammer

Translate (5,0,0)

------ ---{ Rotate (-90) about its local y

Apply all the way

down Apply all the way

down

Hierarchical Transforms Using OpenGL

e Translate base and all its descendants by (5,0,0)

e Rotate lower arm and its descendants by -90 degree about

local y

Base

l

Lower arm

l

Upper arm

l

Hammer

ctm = LoadIdentity();

... [/ setup your camera

ctm = ctm * Translatef(5,0,0);
Draw_base();

ctm = ctm * Rotatef(-90, 0, 1, 0);
Draw_lower _arm();

Draw_upper_arm();
Draw_hammer();

Hierarchical Modeling s

e For large objects with many parts, need to transform
groups of objects

e Need better tools

Upper arm

Torso

Lower arm |_| H

Upper leg

Lower IegU U

Hierarchical Modeling

e Previous CTM had 1 level

e Hierarchical modeling: extend CTM to stack with
multiple levels using linked list
e Manipulate stack levels using 2 operations

e pushMatrix
e popMatrix

Current top
Of CTM stack

v

o w O O
, O O O

o o o k=
o O NN O

PushMatrix

e PushMatrix(): Save current modelview matrix (CTM) in stack

e Positions 1 & 2 in linked list are same after PushMatrix

Before PushMatrix

Current top
Of CTM stack

1

0
0
0

0

2
0
0

0

0
3
0

0

0
0
1

=)

After PushMatrix

o O O B+

o O O B+

0

o o PN

o O N O

o w O O

o w O O

0

0
0
1

, O O O

Current top
Of CTM stack

Saved copy of
matrix at CTM top

PushMatrix

e Further Rotate, Scale, Translate affect only top matrix

e E.g.ctm = ctm * Translate (3,8, 6)

After PushMatrix

1

o O O

o O O B+

0 0O

o O DN

o O N O

o w O

o w O O

, O O

R O O O

o O O B+

003 Translate(3,8,6) applied
10 8] «— only to current top

0 1 6 Of CTM stack

0 0 1

Matrix in second position saved.

<— Unaffected by Translate(3,8,6)

PopMatrix

e PopMatrix(): Delete position 1 matrix, position 2 matrix
becomes top

Before PopMatrix After PopMatrix
1 540 1 00O
Current top 0220 Current top 0200
Of CTM stack 06 3 0 Of CTM stack 0 030
0 0 01 0 0 01

[N

Delete this matrix

o w O O
, O O O

o o o =
o O NN O

| Code Modelview Matrix P us h M at rix

glLoadldentity();

gl Translatef(0.0, 0.0, —15.0);

glPushMatrix();
//Copy of M, placed on top.

glScalef(1.0, 2.0, 1.0);

glutWireCube(S 0);
//No change.

_ glPopMatrix();
//Back to before the push statement!

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8);
//No change.

Stack

-

3
PopMatrix and o
lllustration

3 * Note: Diagram uses old glTranslate,

E‘ glScale, etc commands

<

;51 * We want same behavior though

§=

“%'J\ Apply matrix at top of CTM to

&

vertices of object created

Ref: Computer Graphics

Figure 4.19: Transitions of the modelview matrix stack. Th rough OpenGL by Guha

Humanoid Figure

Upper arm
Torso

Lower arm H

Upper leg

Lower leg

22

Torso
Head Leftupper Rightupper Leftupper Rightupper
arm arm leg leg
Leftlower Rightlower Leftlower Rightlower
arm arm leg leg

Building the Model

e Draw each part as a function
e torso()
o left upper arm(), etc

e Transform Matrices: transform
of node wrt its parent

o M, positions left lower arm with
respect to left upper arm

e Stack based traversal (push, pop)

23

Upper arm

|

I\/Illa

Lower arm

] L

Draw Humanoid using Stack

Torso

figure() { | |
PushMatrix () «—— Save present model-view matrix

torso () ; -« draw torso

24

o00
TIX
T
o5
Draw Humanoid using Stack :
Torso
Mh
Head figure() { |
PushMatrix ()
torso() ;
Rotate (..); - (M,)) Transformation of head

Relative to torso

head();$\\\\\\\\\\

draw head

25

(Y X
'YX
oo
Draw Humanoid using Stack
Torso
M M !
h lua PushMatrix ()
Head Leftupper torso() ;
arm Rotate (..);
head() ;
Go back to torso matrix, PopMatrix() ;
and save it again PushMatrix () ;
(M,,,) Transformation(s) of left Translate(..) ;
upper arm relative to torso Rotate (..) ;
draw left-upper arm > left_upper_arm() ;

26

// rest of code()

X
oo
S
Complete Humanoid Tree with Matrices
Torso
Mh Mfua Mrua MIUI Mrul
Head Leftupper Right-upper Leftupper Right-upper
arm arm leg leg
‘ MHa + Mrfa + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower
arm arm leg leg

Scene graph of Humanoid Robot

VRML
e Scene graph introduced by SGI Open Inventor

e Used in many graphics applications (Maya, etc)

e Virtual Reality Markup Language
e Scene graph representation of virtual worlds on Web
e Scene parts can be distributed across multiple web servers
e Implemented using OpenGL

28

References

e Angel and Shreiner, Interactive Computer Graphics
(6th edition), Chapter 8

Exam 1 Next Week

Exam 1 Overview oo

e Tuesday, February 14, in-class

e Will cover up to lecture 4 (hierarchical transforms)
e Can bring:
One page cheat-sheet, hand-written (not typed)
Calculator
o Will test:
Theoretical concepts
Mathematics
Algorithms
Programming

OpenGL/GLSL knowledge (program structure and some
commands)

What am | Really Testing?

e Understanding of
concepts (NOT only programming)
programming (pseudocode/syntax)

e Test that:

you can plug in numbers by hand to check your
programs

you did the projects
you understand what you did in projects

General Advise

e Read your projects and refresh memory of what you did

e Read the slides: worst case — if you understand slides, you're
more than 50% prepared

e Try to predict subtle changes to algorithm.. What ifs?..

e Past exams: One sample midterm is on website

e All lectures have references. Look at refs to focus reading
e Do all readings | asked you to do on your own

Grading Policy

e | try to give as much partial credit as possible

e In time constraints, laying out outline of solution
gets you healthy chunk of points

e Try to write something for each question

e Many questions will be easy, exponentially harder to
score higher in exam

Introduction

e Motivation for CG

e Uses of CG (simulation, image processing, movies, viz, etc)

e Elements of CG (polylines, raster images, filled regions, etc)
e Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

e High-level:

What is OpenGL?

What is GLUT?

What is GLSL

Functionality, how do they work together?
e Sequential Vs. Event-driven programming

e OpenGL/GLUT program structure (create window, init,
callback registration, etc)

e GLUT callback functions (registration and response to events)

OpenGL Drawing

e Vertex Buffer Objects
e glDrawArrays
e OpenGL:

Drawing primitives: GL_POINTS, GL_LINES, etc (should be
conversant with the behaviors of major primitives)

Data types
Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)
OpenGL state

e GLSL Command format/syntax

e Vertex and fragments shaders

e Shader setup, How GLSL works

2D Graphics: Coordinate Systems

e Screen coordinate system/Viewport

e World coordinate system/World window
e Setting Viewport

e Tiling, aspect ratio

Fractals

e What are fractals?
Self similarity
Applications (clouds, grass, terrain etc)

e Mandelbrot set

Complex numbers: s, ¢, orbits, complex number math
Dwell function

Assigning colors

Mapping mandelbrot to screen

e Koch curves, gingerbread man, hilbert transforms

Points, Scalars Vectors

e Vector Operations:
Addition, subtraction, scaling
Magnitude
Normalization
Dot product
Cross product
Finding angle between two vectors

e Finding normal of plane using cross product,
Newell method

Transforms

e Homogeneous coordinates Vs. Ordinary coordinates

e 2D/3D affine transforms: rotation, scaling, translation, shearing

e Should be able to take problem description and build
transforms and apply to vertices

e 2D: rotation (scaling, etc) about arbitrary center:
T(Px,Py) R(O) T(-Px,-Py) * P

e Composing transforms

e 3D rotation:

x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if
given azimuth, latitude of vector or (X, y, z) of normalized
vector

e Matrix multiplication!!

e Hierarchical transforms!!

Building 3D Models

e Drawing Polygonal meshes
e Edge list
e Vertex List

