
Computer Graphics (CS 543)
Lecture 4 (Part 3): Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Instance Transformation

 Start with unique object (a symbol)

 Each appearance of object in model is an instance

 Must scale, orient, position

 Defines instance transformation

Symbol

Instance

Symbol-Instance Table

Can store intances + instance transformations

Problems with Symbol-Instance Table

 Symbol-instance table does not show relationships
between parts of model

 Consider model of car
 Chassis (body) + 4 identical wheels

 Two symbols

 Relationships:
 Wheels connected to chassis

 Chassis motion determined by rotational speed of wheels

5

Structure Program Using Function Calls?

car(speed)

{

chassis()

wheel(right_front);

wheel(left_front);

wheel(right_rear);

wheel(left_rear);

}

 Fails to show relationships between parts
 Explore graph representation

Chassis

Left front

wheel

Left back

wheel

6

Graphs

 Set of nodes + edges (links)

 Edge connects a pair of nodes

 Directed or undirected

 Cycle: directed path that is a loop

loop

edge

node

7

Tree

 Graph in which each node (except root) has exactly
one parent node

 A parent may have multiple children

 Leaf node: no children

root node

leaf node

8

Tree Model of Car

Hierarchical Transforms

 Robot arm: Many small connected parts

 Attributes (position, orientation, etc) depend on
each other

base

lower arm

hammer

A Robot Hammer!

Upper arm

Hierarchical Transforms

 Object dependency description using tree
structure

Base

Lower arm

Upper arm

Hammer

Root node

Leaf node

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
… nodes

Hierarchical representation is

known as a Scene Graph

Transformations

 Two ways to specify transformations:

 (1) Absolute transformation: each part transformed
independently (relative to origin)

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);
…

x
z

y

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify transformation for
each object relative to its parent

Step 1: Translate base and
its child nodes by (5,0,0);

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

x
z

y

x

z

y

Relative Transformation

 Relative transformation using scene graph

Base

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down Apply all the way

down

Hierarchical Transforms Using OpenGL

 Translate base and all its descendants by (5,0,0)

 Rotate lower arm and its descendants by -90 degree about
local y

Base

Lower arm

Upper arm

Hammer

ctm = LoadIdentity();

… // setup your camera

ctm = ctm * Translatef(5,0,0);

Draw_base();

ctm = ctm * Rotatef(-90, 0, 1, 0);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

Hierarchical Modeling

 For large objects with many parts, need to transform
groups of objects

 Need better tools

Torso

Lower arm

Upper arm

Upper leg

Lower leg

Hierarchical Modeling

 Previous CTM had 1 level

 Hierarchical modeling: extend CTM to stack with
multiple levels using linked list

 Manipulate stack levels using 2 operations

 pushMatrix

 popMatrix





















1000

0300

0020

0001

Current top

Of CTM stack

PushMatrix

 PushMatrix(): Save current modelview matrix (CTM) in stack

 Positions 1 & 2 in linked list are same after PushMatrix





















1000

0300

0020

0001

Current top

Of CTM stack





















1000

0300

0020

0001

Current top

Of CTM stack

Before PushMatrix After PushMatrix





















1000

0300

0020

0001

Saved copy of

matrix at CTM top

PushMatrix

 Further Rotate, Scale, Translate affect only top matrix

 E.g. ctm = ctm * Translate (3,8,6)





















1000

0300

0020

0001

Translate(3,8,6) applied

only to current top

Of CTM stack

After PushMatrix





















1000

0300

0020

0001





















1000

6100

8010

3001

Matrix in second position saved.

Unaffected by Translate(3,8,6)

PopMatrix

 PopMatrix(): Delete position 1 matrix, position 2 matrix
becomes top





















1000

0300

0020

0001

Current top

Of CTM stack





















1000

0360

0220

0451

Before PopMatrix





















1000

0300

0020

0001

Current top

Of CTM stack

After PopMatrix

Delete this matrix

Ref: Computer Graphics
Through OpenGL by Guha

• Note: Diagram uses old glTranslate,

glScale, etc commands

• We want same behavior though

Apply matrix at top of CTM to

vertices of object created

PopMatrix and
PushMatrix
Illustration

22

Humanoid Figure

Torso

Lower arm

Upper arm

Upper leg

Lower leg

23

Building the Model

 Draw each part as a function
 torso()

 left_upper_arm(), etc

 Transform Matrices: transform
of node wrt its parent

 Mlla positions left lower arm with
respect to left upper arm

 Stack based traversal (push, pop)

Lower arm

Upper arm

Mlla

24

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

save present model-view matrix

draw torso

25

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

(Mh) Transformation of head

Relative to torso

draw head

26

Draw Humanoid using Stack

figure() {

PushMatrix()

torso();

Rotate (…);

head();

PopMatrix();

PushMatrix();

Translate(…);

Rotate(…);

left_upper_arm();

……..

// rest of code()

draw left-upper arm

(Mlua) Transformation(s) of left

upper arm relative to torso

Go back to torso matrix,

and save it again

Complete Humanoid Tree with Matrices

Scene graph of Humanoid Robot

28

VRML
 Scene graph introduced by SGI Open Inventor

 Used in many graphics applications (Maya, etc)

 Virtual Reality Markup Language

 Scene graph representation of virtual worlds on Web

 Scene parts can be distributed across multiple web servers

 Implemented using OpenGL

References

 Angel and Shreiner, Interactive Computer Graphics
(6th edition), Chapter 8

Exam 1 Next Week

Exam 1 Overview

 Tuesday, February 14, in-class

 Will cover up to lecture 4 (hierarchical transforms)

 Can bring:

 One page cheat-sheet, hand-written (not typed)

 Calculator

 Will test:

 Theoretical concepts

 Mathematics

 Algorithms

 Programming

 OpenGL/GLSL knowledge (program structure and some
commands)

What am I Really Testing?

 Understanding of

 concepts (NOT only programming)

 programming (pseudocode/syntax)

 Test that:

 you can plug in numbers by hand to check your
programs

 you did the projects

 you understand what you did in projects

General Advise

 Read your projects and refresh memory of what you did

 Read the slides: worst case – if you understand slides, you’re
more than 50% prepared

 Try to predict subtle changes to algorithm.. What ifs?..

 Past exams: One sample midterm is on website

 All lectures have references. Look at refs to focus reading

 Do all readings I asked you to do on your own

Grading Policy

 I try to give as much partial credit as possible

 In time constraints, laying out outline of solution
gets you healthy chunk of points

 Try to write something for each question

 Many questions will be easy, exponentially harder to
score higher in exam

Introduction

 Motivation for CG

 Uses of CG (simulation, image processing, movies, viz, etc)

 Elements of CG (polylines, raster images, filled regions, etc)

 Device dependent graphics libraries (OpenGL, DirectX, etc)

OpenGL/GLUT

 High-level:

 What is OpenGL?

 What is GLUT?

 What is GLSL

 Functionality, how do they work together?

 Sequential Vs. Event-driven programming

 OpenGL/GLUT program structure (create window, init,
callback registration, etc)

 GLUT callback functions (registration and response to events)

OpenGL Drawing

 Vertex Buffer Objects

 glDrawArrays

 OpenGL :

 Drawing primitives: GL_POINTS, GL_LINES, etc (should be
conversant with the behaviors of major primitives)

 Data types

 Interaction: keyboard, mouse (GLUT_LEFT_BUTTON, etc)

 OpenGL state

 GLSL Command format/syntax

 Vertex and fragments shaders

 Shader setup, How GLSL works

2D Graphics: Coordinate Systems

 Screen coordinate system/Viewport

 World coordinate system/World window

 Setting Viewport

 Tiling, aspect ratio

Fractals

 What are fractals?

 Self similarity

 Applications (clouds, grass, terrain etc)

 Mandelbrot set

 Complex numbers: s, c, orbits, complex number math

 Dwell function

 Assigning colors

 Mapping mandelbrot to screen

 Koch curves, gingerbread man, hilbert transforms

Points, Scalars Vectors

 Vector Operations:

 Addition, subtraction, scaling

 Magnitude

 Normalization

 Dot product

 Cross product

 Finding angle between two vectors

 Finding normal of plane using cross product,
Newell method

Transforms
 Homogeneous coordinates Vs. Ordinary coordinates

 2D/3D affine transforms: rotation, scaling, translation, shearing

 Should be able to take problem description and build
transforms and apply to vertices

 2D: rotation (scaling, etc) about arbitrary center:

 T(Px,Py) R() T(-Px,-Py) * P

 Composing transforms

 3D rotation:

 x-roll, y-roll, z-roll, about arbitrary vector (Euler theorem) if
given azimuth, latitude of vector or (x, y, z) of normalized
vector

 Matrix multiplication!!

 Hierarchical transforms!!

Building 3D Models

 Drawing Polygonal meshes

 Edge list

 Vertex List

