
Computer Graphics (CS 543) 
Lecture 9: Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)



Introduction to Shadows
 Shadows give information on relative positions of objects 

Use just ambient 

component

Use ambient +

diffuse + specular

components



Why shadows?
 More realism and atmosphere

Image courtesy of BioWare

Neverwinter Nights



Types of Shadow Algorithms

 As separate objects (like Peter Pan's shadow)

 Projective shadows

 As volumes of space that are dark

 Shadow volumes [Franklin Crow 77]

 As places not seen from a light source looking at 
the scene

 Shadow maps [Lance Williams 78]

 Fourth method used in ray tracing



Projective Shadows

 Oldest method: Used in early flight simulators

 Projection of polygon is polygon called shadow polygon

Actual polygon

Shadow polygon



Projective Shadows

 Works for flat surfaces illuminated by point light

 For each face, project vertices V to find V’ of shadow polygon

 Object shadow  =  union of projections of faces



Projective Shadow Algorithm

 Project light-object edges onto plane

 Algorithm:

 First, draw ground plane/scene using 
specular+diffuse+ambient components

 Then, draw shadow projections (face by face) using only 
ambient component



Projective Shadows for Polygon

1. If light is at (xl, yl, zl)

2. Vertex at (x, y, z)

3. Would like to calculate shadow polygon vertex V projected 
onto ground at (xp, 0, zp)

(x,y,z)

(xp,0,zp)

Ground plane: y = 0



Projective Shadows for Polygon

 If we move original polygon so that light source is at origin

 Matrix M projects a vertex V to give

its projection V’ in shadow polygon



























00
1

0

0100

0010

0001

y
l

m



Building Shadow Projection Matrix

1. Translate source to origin with T(-xl, -yl, -zl)

2. Perspective projection

3. Translate back by T(xl, yl, zl)




































































1000

100

010

001

00
1

0

0100

0010

0001

1000

100

010

001

l

l

l

l

l

l

l

z

y

x

z

y

x

M

y

Final matrix that projects

Vertex V onto V’ in shadow polygon



Code snippets?

 Set up projection matrix in OpenGL application

float light[3];  // location of light

mat4 m;    // shadow projection matrix initially identity 

M[3][1] = -1.0/light[1];  



























00
1

0

0100

0010

0001

y
l

M



Projective Shadow Code

 Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

{vec4(-0.5, 0.5, -0.5, 1.0}

 Copy square to VBO

 Pass modelview, projection matrices to vertex shader



What next?

 Next, we load model_view as usual then draw

original polygon

 Then load shadow projection matrix, change color to 
black, re-render polygon 

1. Load modelview

draw polygon as usual

2. Modify modelview with

Shadow projection matrix

Re-render as black (or ambient)



Shadow projection Display( ) Function

void display( )

{

mat4 mm;

// clear the window

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// render red square (original square) using modelview

// matrix as usual (previously set up)

glUniform4fv(color_loc, 1, red);

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);



Shadow projection Display( ) Function
// modify modelview matrix to project square

// and send modified model_view matrix to shader

mm = model_view 

* Translate(light[0], light[1], light[2]

*m

* Translate(-light[0], -light[1], -light[2]);

glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, mm);

//and re-render square as

// black square (or using only ambient component)

glUniform4fv(color_loc, 1, black);

glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

glutSwapBuffers( );

}




































































1000

100

010

001

00
1

0

0100

0010

0001

1000

100

010

001

l

l

l

l

l

l

l

z

y

x

z

y

x

M

y



Shadow Buffer Theory

 Along each path from light

 Only closest object is lit

 Other objects on that path in shadow

 Shadow buffer stores closest object on each path

Lit

In shadow



Shadow Map Illustrated
 Second dept buffer called the shadow map is used

 Point va stored in element a of shadow map: lit!

 Point vb NOT in element b of shadow map: In shadow

Not limited to planes



Shadow Map: Depth Comparison



OpenGL Depth Buffer (Z Buffer)

 Depth: While drawing objects, depth buffer stores 
distance of each polygon from viewer 

 Why? If multiple polygons overlap a pixel, only 
closest one polygon is drawn

eye

Z = 0.3

Z = 0.5

1.0      0.3       0.3      1.0

0.5      0.3     0.3     1.0

0.5       0.5     1.0     1.0

1.0       1.0     1.0     1.0

Depth



Setting up OpenGL Depth Buffer

 Note: You did this in order to draw solid cube, meshes

1. glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB)

instructs openGL to create depth buffer

2. glEnable(GL_DEPTH_TEST) enables depth testing

3. glClear(GL_COLOR_BUFFER_BIT | 

GL_DEPTH_BUFFER_BIT)

Initializes depth buffer every time we draw a new picture



Shadow Map Approach

 Rendering in two stages:

 Loading shadow Map

 Render the scene



Loading Shadow Map

 Initialize each element to 1.0

 Position a camera at light source

 Rasterize each face in scene updating closest object

 Shadow map (buffer) tracks smallest depth on each 
path 



Shadow Map (Rendering Scene)

 Render scene using camera as usual

 While rendering a pixel find:

 pseudo-depth D from light source to P

 Index location [i][j] in shadow buffer, to be tested

 Value d[i][j] stored in shadow buffer

 If d[i][j] < D (other object on this path closer to light)

 point P is in shadow

 lighting = ambient

 Otherwise, not in shadow

 Lighting = amb + diffuse + specular D[i][j]
D

In shadow



Loading Shadow Map

 Shadow map calculation is independent of eye 
position

 In animations, shadow map loaded once 

 If eye moves, no need for recalculation

 If objects move, recalculation required



Example: Hard vs Soft Shadows

Hard Shadow Soft Shadow



Definitions

 Point light: create hard shadows (unrealistic)

 Area light: create soft shadows (more realistic)

point source

umbra

area source

Umbra

(no light)

Penumbra

(some light)



Shadow Map Problems

 Low shadow map resolution results in jagged shadows



Percentage Closer Filtering

 Blend multiple shadow map samples to reduce jaggies



Shadow Map Result



Arbitrary geometry

 Shadow mapping and shadow volumes can render 
shadows onto arbitrary geometry

 Recent focus on shadow volumes, because currently 
most popular, and works on most hardware

 Works in real time…

 Shadow mapping is used 

in Pixar’s rendering software



Shadow volumes

 Most popular method for real time

 Shadow volume concept



Shadow volumes
 Create volumes of space in shadow from each 

polygon in light

 Each triangle creates 3 projecting quads



Shadow Volume Example

Image courtesy of NVIDIA Inc.



Fog example

 Fog is atmospheric effect

 Better realism, helps determine distances



Fog

 Fog was part of OpenGL fixed function pipeline

 Programming fixed function fog 
 Parameters: Choose fog color, fog model

 Enable: Turn it on

 Fixed function fog deprecated!!

 Shaders can implement even better fog

 Shaders implementation: fog applied in fragment 
shader just before display



Rendering Fog
 Mix some color of fog:       + color of surface: 

 If f = 0.25, output color = 25% fog + 75% surface color

fc sc

]1,0[      )1(  fff sfp ccc

 f computed as function of distance z

 3 ways: linear, exponential, exponential-squared

 Linear:

startend

pend

zz

zz
f






startz

Endz

Pz



Fog Shader Fragment Shader Example

float dist = abs(Position.z);

Float fogFactor = (Fog.maxDist – dist)/

Fog.maxDist – Fog.minDist);

fogFactor = clamp(fogFactor, 0.0, 1.0);

vec3 shadeColor = ambient + diffuse + specular

vec3 color = mix(Fog.color, shadeColor,fogFactor);

FragColor = vec4(color, 1.0);

startend

pend

zz

zz
f






 )1( sfp ff ccc 



Fog

 Exponential

 Squared exponential

 Exponential derived from Beer’s law 

 Beer’s law: intensity of outgoing light diminishes 
exponentially with distance

pf zd
ef



2)( pf zd

ef






Fog Optimizations

 f values for different depths (    )can be pre-computed 
and stored in a table on GPU

 Distances used in f calculations are planar

 Can also use Euclidean distance from viewer or radial 
distance to create radial fog

Pz



References

 Interactive Computer Graphics (6th edition), Angel 
and Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill 
and Kelley

 Real Time Rendering by Akenine-Moller, Haines and 
Hoffman


