Computer Graphics (CS 543) Lecture 12 (Part 1): Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Rasterization

- Rasterization generates set of fragments
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g lines, circles, triangles, polygons)

Rasterization: Determine Pixels
(fragments) each primitive covers

Fragments

Line drawing algorithm

- Programmer specifies (x, y) of end pixels
- Need algorithm to determine pixels on line path

$$
\text { Line: }(3,2) \text {-> }(9,6)
$$

Which intermediate pixels to turn on?

Line drawing algorithm

- Pixel (x, y) values constrained to integer values
- Computed intermediate values may be floats
- Rounding may be required. E.g. $(10.48,20.51)$ rounded to $(10,21)$
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies

Line Drawing Algorithm

- Slope-intercept line equation
- $y=m x+b$
- Given 2 end points ($x 0, y 0$), ($x 1, y 1$), how to compute m and b ?

$$
m=\frac{d y}{d x}=\frac{y 1-y 0}{x 1-x 0} \quad \begin{array}{ll}
y 0=m^{*} x 0+b \\
\Rightarrow b=y 0-m^{*} x 0
\end{array}
$$

Line Drawing Algorithm

- Numerical example of finding slope m :
- $(A x, A y)=(23,41),(B x, B y)=(125,96)$

$$
m=\frac{B y-A y}{B x-A x}=\frac{96-41}{125-23}=\frac{55}{102}=0.5392
$$

Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, m:

Step through line, starting at ($\mathrm{x} 0, \mathrm{y} 0$)
Case a: ($\mathrm{m}<1$) x incrementing faster
Step in $x=1$ increments, compute y (a fraction) and round

- Case b: $(\mathrm{m}>1) \mathrm{y}$ incrementing faster

Step in $y=1$ increments, compute x (a fraction) and round

DDA Line Drawing Algorithm (Case a: $\mathrm{m}<1$)

$m=\frac{\Delta y}{\Delta x}=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}}=\frac{y_{k+1}-y_{k}}{1}$
$\mathrm{x}=\mathrm{x} 0$
$y=y 0$
Illuminate pixel (x , round(y))

$$
x=x+1 \quad y=y+m
$$

Illuminate pixel (x, round(y))

$$
x=x+1 \quad y=y+m
$$

Illuminate pixel (x, round(y))

Until $\mathrm{x}=\mathrm{x} 1$
Example, if first end point is (0,0)
Example, if $\mathrm{m}=0.2$
Step 1: $x=1, y=0.2=>$ shade $(1,0)$
Step 2: $x=2, y=0.4=>$ shade $(2,0)$
Step 3: $x=3, y=0.6=>$ shade $(3,1)$
... etc

DDA Line Drawing Algorithm (Case b: m > 1)

$m=\frac{\Delta y}{\Delta x}=\frac{y_{k+1}-y_{k}}{x_{k+1}-x_{k}}=\frac{1}{x_{k+1}-x_{k}}$
$\Rightarrow x_{k+1}=x_{k}+\frac{1}{m}$

$$
x=x 0 \quad y=y 0
$$

Illuminate pixel (round $(x), y)$

$$
y=y+1 \quad x=x+1 / m
$$

Illuminate pixel (round $(x), y)$

$$
y=y+1 \quad x=x+1 / m
$$

Illuminate pixel (round(x), y)

$$
\text { Until } y==y 1
$$

Example, if first end point is $(0,0)$ if $1 / \mathrm{m}=0.2$
Step 1: $y=1, x=0.2=>$ shade $(0,1)$ Step 2: $y=2, x=0.4=>$ shade $(0,2)$ Step 3: $y=3, x=0.6=>$ shade $(1,3)$... etc

DDA Line Drawing Algorithm Pseudocode

```
compute m;
if m < 1:
{
    float y = y0; // initial value
    for(int x = x0; x <= x1; x++, y += m)
    setPixel(x, round(y));
}
else // m > 1
{
    float x = x0; // initial value
    for(int y = y0; y <= y1; y++, x += 1/m)
        setPixel(round(x) , y);
}
```

- Note: setPixel (\mathbf{x}, \mathbf{y}) writes current color into pixel in column x and row y in frame buffer

Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
- Not very efficient
- Round operation is expensive
- Optimized algorithms typically used.
- Integer DDA
- E.g.Bresenham algorithm
- Bresenham algorithm
- Incremental algorithm: current value uses previous value
- Integers only: avoid floating point arithmetic
- Several versions of algorithm: we'll describe midpoint version of algorithm

Bresenham's Line-Drawing Algorithm

- Problem: Given endpoints ($A x, A y$) and ($B x, B y$) of line, determine intervening pixels
- First make two simplifying assumptions (remove later):
- $(A x<B x)$ and
- $(0<m<1)$
- Define
- Width $\mathrm{W}=\mathrm{Bx}-\mathrm{Ax}$
- Height H = By - Ay

Bresenham's Line-Drawing Algorithm

- Based on assumptions $(\mathrm{Ax}<\mathrm{Bx})$ and $(0<m<1)$
- W, H are +ve
- $\mathrm{H}<\mathrm{W}$
- Increment x by $+1, \mathrm{y}$ incr by +1 or stays same
- Midpoint algorithm determines which happens

Bresenham's Line-Drawing Algorithm

What Pixels to turn on or off?
Consider pixel midpoint $M(M x, M y)=(x+1, y+1 / 2)$
Build equation of actual line, compare to midpoint

Case a: If midpoint (red dot) is below line, Shade upper pixel, $(x+1, y+1)$

Case b : If midpoint (red dot) is above line, Shade lower pixel, ($x+1, y$)

Build Equation of the Line

- Using similar triangles:

$$
\frac{y-A y}{x-A x}=\frac{H}{W}
$$

$$
\begin{gathered}
H(x-A x)=W(y-A y) \\
-W(y-A y)+H(x-A x)=0
\end{gathered}
$$

- Above is equation of line from (Ax, Ay) to (Bx, By)
- Thus, any point (x, y) that lies on ideal line makes eqn $=0$
- Double expression (to avoid floats later), and call it $F(x, y)$

$$
F(x, y)=-2 W(y-A y)+2 H(x-A x)
$$

Bresenham's Line-Drawing Algorithm

- So, $F(x, y)=-2 W(y-A y)+2 H(x-A x)$
- Algorithm, If:
- $F(x, y)<0,(x, y)$ above line
- $F(x, y)>0,(x, y)$ below line
- Hint: $F(x, y)=0$ is on line
- Increase y keeping x constant, F(x, y) becomes more negative

Bresenham's Line-Drawing Algorithm

- Example: to find line segment between $(3,7)$ and $(9,11)$

$$
\begin{aligned}
F(x, y) & =-2 W(y-A y)+2 H(x-A x) \\
& =(-12)(y-7)+(8)(x-3)
\end{aligned}
$$

- For points on line. E.g. (7, 29/3), $F(x, y)=0$
- $A=(4,4)$ lies below line since $F=44$
- $B=(5,9)$ lies above line since $F=-8$

Bresenham's Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint $M(M x, M y)=(x 0+1, Y 0+1 / 2)$

Can compute $\mathrm{F}(\mathrm{x}, \mathrm{y})$ incrementally

Initially, midpoint $M=(A x+1, A y+1 / 2)$

$$
F(M x, M y)=-2 W(y-A y)+2 H(x-A x)
$$

i.e. $F(A x+1, A y+1 / 2)=2 H-W$

Can compute $F(x, y)$ for next midpoint incrementally If we increment to $(x+1, y)$, compute new $F(M x, M y)$

$$
F(M x, M y)+=2 H
$$

i.e. $F(A x+2, A y+1 / 2)$

$$
\begin{gathered}
-F(A x+1, A y+1 / 2) \\
=2 H
\end{gathered}
$$

Can compute $\mathrm{F}(\mathrm{x}, \mathrm{y})$ incrementally

If we increment to $(x+1, y+1)$

$$
F(M x, M y)+=2(H-W)
$$

$(A x+2, A y+3 / 2)$
i.e. $F(A x+2, A y+3 / 2)-F(A x+1, A y+1 / 2)=2(H-W)$

Bresenham's Line-Drawing Algorithm

```
Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1
    int y = a.y, W = b.x - a.x, H = b.y - a.y;
    int F=2 * H-W; // current error term
    for(int x = a.x; x <= b.x; x++)
    {
    setpixel at (x,y); // to desired color value
        if F < 0 // y stays same
            F = F + 2H;
        else{
            Y++, F = F + 2(H - W) // increment y
        }
    }
}
```

- Recall: F is equation of line

Bresenham's Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions $0<\mathrm{m}<1$ and $\mathrm{Ax}<\mathrm{Bx}$
- Can add code to remove restrictions
- When Ax > Bx (swap and draw)
- Lines having $m>1$ (interchange x with y)
- Lines with $\mathrm{m}<0$ (step $\mathrm{x}++$, decrement y not incr)
- Horizontal and vertical lines (pretest a.x = b.x and skip tests)

References

- Angel and Shreiner, Interactive Computer Graphics, $6^{\text {th }}$ edition
- Hill and Kelley, Computer Graphics using OpenGL, $3^{\text {rd }}$ edition, Chapter 9

