Computer Graphics (CS 543) Lecture 4a: Introduction to Transformations

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Hidden-Surface Removal

- If multiple surfaces overlap, we want to see only closest
- OpenGL uses hidden-surface technique called the \mathbf{z}-buffer algorithm
- Z-buffer compares objects distances from viewer (depth) to determine closer objects

If overlap,
Draw face A (front face)
Do not draw faces \mathbf{B} and \mathbf{C}

Using OpenGL's z-buffer algorithm

- Z-buffer uses an extra buffer, (the z-buffer), to store depth information, compare distance from viewer
- 3 steps to set up Z-buffer:

1. In main() function
```
    glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)
```

2. Enabled in init() function
glEnable(GL_DEPTH_TEST)
3. Clear depth buffer whenever we clear screen glClear (GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)

3D Mesh file formats

- 3D meshes usually stored in 3D file format
- Format defines how vertices, edges, and faces are declared
- Over 400 different file formats
- Polygon File Format (PLY) used a lot in graphics
- Originally PLY was used to store 3D files from 3D scanner
- We will use PLY files in this class

Sample PLY File

```
ply
format ascii 1.0
comment this is a simple file
obj_info any data, in one line of free form text element vertex 3
property float x
property float y
property float z
element face 1
property list uchar int vertex_indices
end_header
-1 0 0
0 1 0
100
3 0 1 2
```


Georgia Tech Large Models Archive

\% Models			
Stanford Bunny	Turbine Blade	Skeleton Hand	Dragon
Happy Buddha	Horse	Visible Man Skin	Visible Man Bone
Grand Canyon	Puget Sound	Angel	

Stanford 3D Scanning Repository

Lucy: 28 million faces
Happy Buddha: 9 million faces

Introduction to Transformations

- May also want to transform objects by changing its:
- Position (translation)
- Size (scaling)
- Orientation (rotation)
- Shapes (shear)

Translation

- Move each vertex by same distance $\mathbf{d}=\left(\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\mathbf{y}}, \mathbf{d}_{\mathbf{z}}\right)$

object

translation: every point displaced by same vector

Scaling

Expand or contract along each axis (fixed point of origin)

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{s}_{\mathrm{x}} \mathrm{x} \\
& \mathrm{y}^{\prime}=\mathrm{s}_{\mathrm{y}} \mathrm{y} \\
& \mathrm{z}^{\prime}=\mathrm{s}_{\mathrm{z}} \\
& \mathbf{p}^{\prime}=\mathbf{S p}
\end{aligned}
$$

Introduction to Transformations

- We can transform (translation, scaling, rotation, shearing, etc) object by applying matrix multiplications to object vertices
$\nearrow\left(\begin{array}{c}P_{x}^{\prime} \\ P_{y}^{\prime} \\ P_{z}^{\prime} \\ 1\end{array}\right)=\left(\begin{array}{cccc}m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{c}P_{x} \\ P_{y} \\ P_{z} \\ 1\end{array}\right)$

Original Vertex

Transform Matrix

- Note: point (x, y, z) needs to be represented as ($x, y, z, 1$), also called Homogeneous coordinates

Why Matrices?

- Multiple transform matrices can be pre-multiplied
- One final resulting matrix applied (efficient!)
- For example: transform $1 \times$ transform $2 \times$ transform $3 \ldots$

3D Translation Example

object

Translation of object

- Example: If we translate a point $(2,2,2)$ by displacement $(2,4,6)$, new location of point is $(4,6,8)$

Using matrix multiplication for translation
Translate(2,4,6)
-Translate $\mathrm{x}: 2+2=4$
-Translate y: $2+4=6$
-Translate z: $2+6=4$

$$
\left(\begin{array}{l}
4 \\
6 \\
8 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
2 \\
2 \\
2 \\
1
\end{array}\right)
$$

Translated point

3D Translation

- Translate object $=$ Move each vertex by same distance $\mathbf{d}=\left(\mathbf{d}_{x}, \mathbf{d}_{\mathbf{y}}, \mathbf{d}_{\mathbf{z}}\right)$
object

Translate(dx,dy,dz)
-Where:

- $x^{\prime}=x+d x$
- $y^{\prime}=y+d y$
- $z^{\prime}=z+d z$

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lllc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right) *\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

Translation Matrix

Scaling Example

If we scale a point $(2,4,6)$ by scaling factor $(0.5,0.5,0.5)$
Scaled point position $=(1,2,3)$
-Scale $\mathrm{x}: 2 \times 0.5=1$
-Scale y: $4 \times 0.5=2$
-Scale z: $6 \times 0.5=3$

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
2 \\
4 \\
6 \\
1
\end{array}\right)
$$

Scale Matrix for
Scale(0.5, 0.5, 0.5)

Scaling

Scale object = Move each object vertex by scale factor $\mathbf{S}=\left(\mathbf{S}_{\mathbf{x}}, \mathbf{S}_{\mathbf{y}}, \mathbf{S}_{\mathbf{z}}\right)$
Expand or contract along each axis (relative to origin)

$$
\begin{aligned}
& \mathrm{x}^{\prime}=\mathrm{s}_{\mathrm{x}} \mathrm{x} \\
& \mathrm{y}^{\prime}=\mathrm{s}_{\mathrm{y}} \mathrm{y} \\
& \mathrm{z}^{\prime}=\mathrm{s}_{\mathrm{z}} \mathrm{z}
\end{aligned}
$$

Using matrix multiplication for scaling

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Shearing

- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:
- y ' $=y$
- $x^{\prime}=x+y$ * h

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lll}
1 & h & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) *\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

-h is fraction of y to be added to x

3D Shear

Reflection

- corresponds to negative scale factors

References

- Angel and Shreiner, Chapter 3
- Hill and Kelley, Chapter 5

