
Computer Graphics (CS 543)
Lecture 4a: Introduction to

Transformations

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Hidden-Surface Removal

 If multiple surfaces overlap, we want to see only closest

 OpenGL uses hidden-surface technique called the z-buffer
algorithm

 Z-buffer compares objects distances from viewer (depth) to
determine closer objects

If overlap,

Draw face A (front face)

Do not draw faces B and C

Using OpenGL’s z-buffer algorithm

 Z-buffer uses an extra buffer, (the z-buffer), to store
depth information, compare distance from viewer

 3 steps to set up Z-buffer:

1. In main() function
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

2. Enabled in init() function
glEnable(GL_DEPTH_TEST)

3. Clear depth buffer whenever we clear screen
glClear(GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)

3D Mesh file formats

 3D meshes usually stored in 3D file format

 Format defines how vertices, edges, and faces are declared

 Over 400 different file formats

 Polygon File Format (PLY) used a lot in graphics

 Originally PLY was used to store 3D files from 3D scanner

 We will use PLY files in this class

Sample PLY File

ply

format ascii 1.0

comment this is a simple file

obj_info any data, in one line of free form text element vertex 3

property float x

property float y

property float z

element face 1

property list uchar int vertex_indices

end_header

-1 0 0

0 1 0

1 0 0

3 0 1 2

Georgia Tech Large Models Archive

Stanford 3D Scanning Repository

Lucy: 28 million faces Happy Buddha: 9 million faces

Introduction to Transformations

 May also want to transform objects by changing its:

 Position (translation)

 Size (scaling)

 Orientation (rotation)

 Shapes (shear)

Translation

 Move each vertex by same distance d = (dx, dy, dz)

object translation: every point displaced

by same vector

Scaling

S = S(sx, sy, sz)

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

where

Introduction to Transformations

 We can transform (translation, scaling, rotation, shearing, etc)
object by applying matrix multiplications to object vertices

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also
called Homogeneous coordinates

110001

'

'

'

34333231

24232221

14131211

z

y

x

z

y

x

P

P

P

mmmm

mmmm

mmmm

P

P

P

Original Vertex

Transformed Vertex Transform Matrix

Why Matrices?

 Multiple transform matrices can be pre-multiplied

 One final resulting matrix applied (efficient!)

 For example:

transform 1 x transform 2 x transform 3 ….

1100010001

34333231

24232221

14131211

34333231

24232221

14131211

z

y

x

z

y

x

P

P

P

mmmm

mmmm

mmmm

mmmm

mmmm

mmmm

Q

Q

Q

Original Point
Transformed Point

Transform Matrices can

Be pre-multiplied

3D Translation Example

 Example: If we translate a point (2,2,2) by displacement (2,4,6), new
location of point is (4,6,8)

object Translation of object

1

8

6

4

1000

6100

4010

2001

1

2

2

2

Translate(2,4,6)

Translation Matrix Original point
Translated

point

Translate x: 2 + 2 = 4

Translate y: 2 + 4 = 6

Translate z: 2 + 6 = 4

Using matrix multiplication for translation

3D Translation

 Translate object = Move each vertex by same distance d = (dx, dy, dz)

object
Translation of object

1

'

'

'

z

y

x

1000

100

010

001

z

y

x

d

d

d

1

z

y

x

 *
Where:

 x’= x + dx

 y’= y + dy

 z’= z + dz

Translate(dx,dy,dz)

Translation Matrix

Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5)
Scaled point position = (1, 2, 3)

1

6

4

2

1000

05.000

005.00

0005.0

1

3

2

1

Scale Matrix for

Scale(0.5, 0.5, 0.5)

Scale x: 2 x 0.5 = 1

Scale y: 4 x 0.5 = 2

Scale z: 6 x 0.5 = 3

Scaling

x’=sxx

y’=syy

z’=szz

Scale object = Move each object vertex by scale factor S = (Sx, Sy, Sz)
Expand or contract along each axis (relative to origin)

11000

000

000

000

1

'

'

'

z

y

x

S

S

S

z

y

x

z

y

x

Scale(Sx,Sy,Sz)
Scale Matrix

Using matrix multiplication for scaling

Shearing

 Y coordinates are unaffected, but x cordinates are translated linearly
with y

 That is:

 y’ = y

 x’ = x + y * h

1100

010

01

1

y

xh

y

x

h is fraction of y to be added to x

(x,y)

(x + y*h, y)

y*hx

3D Shear

Reflection

 corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

1000

000

000

000

z

y

x

S

S

S

References

 Angel and Shreiner, Chapter 3

 Hill and Kelley, Chapter 5

