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Hidden-Surface Removal

 If multiple surfaces overlap, we want to see only closest

 OpenGL uses hidden-surface technique called the z-buffer
algorithm 

 Z-buffer compares objects distances from viewer (depth) to 
determine closer  objects 

If overlap, 

Draw face A (front face)

Do not draw faces B and C



Using OpenGL’s  z-buffer algorithm

 Z-buffer uses an extra buffer, (the z-buffer), to store 
depth information, compare distance from viewer

 3 steps to set up Z-buffer:

1. In main( ) function
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH)

2. Enabled in init( ) function
glEnable(GL_DEPTH_TEST)

3. Clear depth buffer whenever we clear screen
glClear(GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)



3D Mesh file formats

 3D meshes usually stored in 3D file format

 Format defines how vertices, edges, and faces are declared

 Over 400 different file formats

 Polygon File Format (PLY) used a lot in graphics

 Originally PLY was used to store 3D files from 3D scanner

 We will use PLY files in this class



Sample PLY File

ply 

format ascii 1.0 

comment this is a simple file 

obj_info any data, in one line of free form text element vertex 3 

property float x 

property float y 

property float z 

element face 1 

property list uchar int vertex_indices 

end_header 

-1 0 0 

0 1 0 

1 0 0 

3 0 1 2



Georgia Tech Large Models Archive



Stanford 3D Scanning Repository

Lucy: 28 million faces Happy Buddha: 9 million faces



Introduction to Transformations

 May also want to transform objects by changing its: 

 Position (translation)

 Size (scaling)

 Orientation (rotation)

 Shapes (shear)



Translation

 Move each vertex by same distance d = (dx, dy, dz)

object translation: every point displaced

by same vector



Scaling

S = S(sx, sy, sz) 

x’=sxx

y’=syy

z’=szz

p’=Sp

Expand or contract along each axis (fixed point of origin)

where



Introduction to Transformations

 We can transform (translation, scaling, rotation, shearing, etc) 
object by applying matrix multiplications to object vertices

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also 
called Homogeneous coordinates
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Why Matrices?

 Multiple transform matrices can be pre-multiplied

 One final resulting matrix applied (efficient!)

 For example:

transform 1   x  transform 2 x  transform 3  …. 
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3D Translation Example

 Example: If we translate a point (2,2,2) by displacement (2,4,6), new 
location of point is (4,6,8)

object Translation of object
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Translate(2,4,6)

Translation Matrix Original point
Translated 

point

Translate x: 2 + 2 = 4

Translate y: 2 + 4 = 6

Translate z: 2 + 6 = 4

Using matrix multiplication for translation



3D Translation

 Translate object = Move each vertex by same distance d = (dx, dy, dz)

object
Translation of object
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 *
Where: 

 x’= x + dx

 y’= y + dy

 z’= z + dz

Translate(dx,dy,dz)

Translation Matrix



Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5) 
Scaled point position = (1, 2, 3)
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Scale Matrix for

Scale(0.5, 0.5, 0.5)

Scale x: 2 x 0.5 = 1

Scale y: 4 x 0.5 = 2

Scale z: 6 x  0.5 = 3



Scaling

x’=sxx

y’=syy

z’=szz

Scale object = Move each object vertex by scale factor S = (Sx, Sy, Sz)
Expand or contract along each axis (relative to origin)
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Using matrix multiplication for scaling



Shearing

 Y coordinates are unaffected, but x cordinates are translated linearly 
with y

 That is:

 y’ = y 

 x’ = x + y * h
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3D Shear



Reflection

 corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1
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