Computer Graphics (CS 543) Lecture 7a: Derivation of Perspective Projection Transformation

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Perspective Projection

- Projection - map the object from 3D space to 2D screen

Perspective()
Frustrum()

Perspective Projection: Classical

Based on similar triangles:

$$
\frac{y^{\prime}}{y}=\frac{N}{-z}
$$

$$
\Rightarrow \quad y^{\prime}=y \times \frac{N}{-z}
$$

Perspective Projection: Classical

- So $\left(x^{*}, y^{*}\right)$ projection of point, (x, y, z) unto near plane N is given as:

$$
\left(x^{*}, y^{*}\right)=\left(x \frac{N}{-z}, y \frac{N}{-z}\right)
$$

- Numerical example:
Q. Where on the viewplane does $P=(1,0.5,-1.5)$ lie for a near plane at $\mathrm{N}=1$?

$$
\left(x^{*}, y^{*}\right)=\left(x \frac{N}{-z}, y \frac{N}{-z}\right)=\left(1 \times \frac{1}{1.5}, 0.5 \times \frac{1}{1.5}\right)=(0.666,0.333)
$$

Pseudodepth

- Classical perspective projection projects (x, y) coordinates to ($\mathrm{x}^{*}, \mathrm{y}^{*}$), drops z coordinates

- But we need z to find closest object (depth testing)!!!

Perspective Transformation

- Perspective transformation maps actual z distance of perspective view volume to range [-1 to 1] (Pseudodepth) for canonical view volume

We want perspective Transformation and NOT classical projection!!

Set scaling z Pseudodepth =az+b Next solve for a and b

Perspective Transformation

- We want to transform viewing frustum volume into canonical view volume

Perspective Transformation using Pseudodepth

$$
\left(x^{*}, y^{*}, z^{*}\right)=\left(x \frac{N}{-z}, y \frac{N}{-z}, \frac{a z+b}{-z}\right)
$$

- Choose $\boldsymbol{a}, \boldsymbol{b}$ so as \mathbf{z} varies from Near to Far, pseudodepth varies from -1 to 1 (canonical cube)
- Boundary conditions
- $z^{*}=-1$ when $z=-N$
- $z^{*}=1$ when $\mathrm{z}=-\mathrm{F}$

Transformation of z : Solve for a and b

- Solving:

$$
z^{*}=\frac{a z+b}{-z}
$$

- Use boundary conditions
- $z^{*}=-1$ when $\mathrm{z}=-\mathrm{N}$.
- $z^{*}=1$ when $z=-F$.
- Set up simultaneous equations

$$
\begin{array}{r}
-1=\frac{-a N+b}{N} \Rightarrow-N=-a N+b . . \\
1=\frac{-a F+b}{F} \Rightarrow F=-a F+b \ldots . \tag{2}
\end{array}
$$

Transformation of z : Solve for a and b

$$
\begin{align*}
-N & =-a N+b \ldots \ldots .(1) \\
F & =-a F+b \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

- Multiply both sides of (1) by -1

$$
\begin{equation*}
N=a N-b \tag{3}
\end{equation*}
$$

- Add eqns (2) and (3)

$$
\begin{gather*}
F+N=a N-a F \\
\Rightarrow a=\frac{F+N}{N-F}=\frac{-(F+N)}{F-N} \tag{4}
\end{gather*}
$$

- Now put (4) back into (3)

Transformation of z : Solve for a and b

- Put solution for a back into eqn (3)

$$
\begin{gathered}
N=a N-b \ldots \ldots . .(3) \\
\Rightarrow N=\frac{-N(F+N)}{F-N}-b \\
\Rightarrow b=-N-\frac{-N(F+N)}{F-N} \\
\Rightarrow b=\frac{-N(F-N)-N(F+N)}{F-N}=\frac{-N F-N^{2}-N F+N^{2}}{F-N}=\frac{-2 N F}{F-N}
\end{gathered}
$$

- So

$$
a=\frac{-(F+N)}{F-N} \quad b=\frac{-2 F N}{F-N}
$$

What does this mean?

- Original point z in original view volume, transformed into z^{*} in canonical view volume

$$
z^{*}=\frac{a z+b}{-z}
$$

Original

- where

$$
\begin{aligned}
& a=\frac{-(F+N)}{F-N} \\
& b=\frac{-2 F N}{F-N}
\end{aligned}
$$

Transformed vertex z^{*} value

Homogenous Coordinates

- Want to express projection transform as 4×4 matrix
- Previously, homogeneous coordinates of

$$
\mathrm{P}=(\mathrm{Px}, \mathrm{Py}, \mathrm{Pz})=>(\mathrm{Px}, \mathrm{Py}, \mathrm{Pz}, 1)
$$

- Introduce arbitrary scaling factor, w, so that

$$
P=(w P x, w P y, w P z, w) \quad \text { (Note: } w \text { is non-zero) }
$$

- For example, the point $P=(2,4,6)$ can be expressed as
- $(2,4,6,1)$
- or $(4,8,12,2)$ where $w=2$
- or $(6,12,18,3)$ where $w=3$, or....
- To convert from homogeneous back to ordinary coordinates, first divide all four terms by \mathbf{w} and discard $4^{\text {th }}$ term

Perspective Projection Matrix

- Recall Perspective Transform

$$
\left(x^{*}, y^{*}, z^{*}\right)=\left(x \frac{N}{-z}, y \frac{N}{-z}, \frac{a z+b}{-z}\right)
$$

- We have:

$$
x^{*}=x \frac{N}{-z} \quad y^{*}=y \frac{N}{-z}
$$

$$
z^{*}=\frac{a z+b}{-z}
$$

- In matrix form:

Perspective Projection Matrix

$$
\begin{aligned}
\left(\begin{array}{cccc}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{c}
w P_{x} \\
w P_{y} \\
w P_{z} \\
w
\end{array}\right) & =\left(\begin{array}{c}
w N P_{x} \\
w N P_{y} \\
w\left(a P_{z}+b\right) \\
-w P_{z}
\end{array}\right) \Rightarrow\left(\begin{array}{c}
x \frac{N}{-z} \\
y \frac{N}{-z} \\
\frac{a z+b}{-z} \\
1
\end{array}\right) \\
a=\frac{-(F+N)}{F-N} \quad b & =\frac{-2 F N}{F-N}
\end{aligned}
$$

- In perspective transform matrix, already solved for \boldsymbol{a} and \boldsymbol{b} :
- So, we have transform matrix to transform z values

Perspective Projection

- Not done yet!! Can now transform z!
- Also need to transform the $\mathbf{x}=$ (left, right) and $\mathbf{y}=$ (bottom, top) ranges of viewing frustum to $[-1,1]$
- Similar to glOrtho, we need to translate and scale previous matrix along x and y to get final projection transform matrix
- we translate by
- $-($ right + left $) / 2$ in x
- -(top + bottom)/2 in y
- Scale by:
- $2 /($ right - left) in x
- $2 /($ top - bottom) in y

Perspective Projection

- Translate along x and y to line up center with origin of CVV
- $\quad-($ right + left $) / 2$ in x
- -(top + bottom)/2 in y
- Multiply by translation matrix:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -(\text { right }+ \text { left }) / 2 \\
0 & 1 & 0 & -(\text { top }+ \text { bottom }) / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Perspective Projection

- To bring view volume size down to size of of CVV, scale by
- $2 /($ right - left) in x
- $2 /($ top - bottom) in y
- Multiply by scale matrix:

Perspective Projection Matrix

Scale
$\left(\begin{array}{cccc}\frac{2}{\text { right-left }} & 0 & 0 & 0 \\ 0 & \frac{2}{\text { top }- \text { bottom }} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \times\left(\begin{array}{cccc}1 & 0 & 0 & -(\text { right }+ \text { left }) / 2 \\ 0 & 1 & 0 & -(\text { top }+ \text { bottom }) / 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \times\left(\begin{array}{cccc}N & 0 & 0 & 0 \\ 0 & N & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0\end{array}\right)$
$\checkmark\left(\begin{array}{cccc}\frac{2 N}{x \max -x \min } & 0 & \frac{\text { right }+ \text { left }}{\text { right }- \text { left }} & 0 \\ 0 & \frac{2 N}{\text { top }- \text { bottom }} & \frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} & 0 \\ 0 & 0 & \frac{-(F+N)}{F-N} & \frac{-2 F N}{F-N} \\ 0 & 0 & -1 & 0\end{array}\right)$

Final Perspective Transform Matrix
glFrustum(left, right, bottom, top, N, F) $N=$ near plane, $F=$ far plane

Perspective Transformation

- After perspective transformation, viewing frustum volume is transformed into canonical view volume

Canonical View Volume

Geometric Nature of Perspective Transform

a) Lines through eye map into lines parallel to z axis after transform
b) Lines perpendicular to z axis map to lines perp to z axis after transform

Normalization Transformation

distorted object

$$
z=-x
$$

projects correctly
original clipping volume
original object new clipping
volume

References

- Interactive Computer Graphics ($6^{\text {th }}$ edition), Angel and Shreiner
- Computer Graphics using OpenGL (3 $3^{\text {rd }}$ edition), Hill and Kelley

