Computer Graphics (CS 543) Lecture 12a: 3D Clipping

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Liang-Barsky 3D Clipping

Ref: Computer Graphics using OpenGL, Hill and Kelley, $3^{\text {rd }}$ edition, pages 356-360
Goal: Clip object edge-by-edge against Canonical View volume (CVV)

Problem:

- 2 end-points of edge: $A=(A x, A y, A z, A w)$ and $C=(C x, C y, C z, C w)$
- If edge intersects with CVV, compute intersection point II=(\|x,\|y,\|z,\|w)

b)

Determining if point is inside CVV

- Problem: Determine if point (x, y, z) is inside or outside CVV?

Point (x, y, z) is inside CVV if

$$
(-1<=x<=1)
$$

and $(-1<=y<=1)$
and $(-1<=z<=1)$
else point is outside CVV
$\mathrm{CVV}=\mathbf{6}$ infinite planes ($\mathrm{x}=-1,1 ; \quad \mathrm{y}=-1,1 ; \quad \mathrm{z}=-1,1$)

Determining if point is inside CVV

- If point specified as (x, y, z, w)
- Test (x/w, y/w, z/w)!

Point ($x / w, y / w, z / w$) is inside CVV
if $(-1<=x / w<=1)$
and $(-1<=y / w<=1)$
and $(-1<=z / w<=1)$
else point is outside CVV

Modify Inside/Outside Tests Slightly

Numerical Example: Inside/Outside CVV Test

Point (x, y, z, w) is

- inside plane $x=-1$ if $w+x>0$
- inside plane $x=1$ if $w-x>0$

Example Point $(0.5,0.2,0.7)$ inside planes $(x=-1,1)$ because $-1<=0.5<=1$
If $w=10,(0.5,0.2,0.7)=(5,2,7,10)$
Can either divide by w then test: $-1<=5 / 10<=1$ OR
To test if inside $x=-1, \quad w+x=10+5=15>0$
To test if inside $x=1, \quad w-x=10-5=5>0$

3D Clipping

Do same for y, z to form boundary coordinates for 6 planes as:

Boundary coordinate (BC)	Homogenous coordinate	Clip plane	Example $(\mathbf{5 , 2 , 7 , 1 0})$
BC0	$\mathrm{w}+\mathrm{x}$	$\mathrm{x}=-1$	15
BC1	$\mathrm{w}-\mathrm{x}$	$\mathrm{x}=1$	5
BC2	$\mathrm{w}+\mathrm{y}$	$\mathrm{y}=-1$	12
BC3	$\mathrm{w}-\mathrm{y}$	$\mathrm{y}=1$	8
BC4	$\mathrm{w}+\mathrm{z}$	$\mathrm{z}=-1$	17
BC5	$\mathrm{w}-\mathrm{z}$	$\mathrm{z}=1$	3

-Consider line that goes from point \mathbf{A} to \mathbf{C}

- Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) > 0
- Trivial reject: Both endpoints outside (-ve) for same plane

Edges as Parametric Equations

- Implicit form $F(x, y)=0$
- Parametric forms:
- points specified based on single parameter value
- Typical parameter: time t

$$
P(t)=P_{0}+\left(P_{1}-P_{0}\right) * t \quad 0 \leq t \leq 1
$$

- Some algorithms work in parametric form
- Clipping: exclude line segment ranges
- Animation: Interpolate between endpoints by varying t
- Represent each edge parametrically as $A+(C-A) t$
- at time $t=0$, point at A
- at time $t=1$, point at C

Inside/outside?

- Test A, C against 6 walls ($\mathbf{x = - 1 , 1 ; ~} \mathbf{y = - 1 , 1 ; ~} \mathbf{z = - 1 , 1)}$
- There is an intersection if BCs have opposite signs. i.e. if either
- A is outside (<0), C is inside (>0) or
- A inside (>0) , C outside (<0)

Edge intersects with plane at some t_hit between [0,1]

Calculating hit time (t_hit)

- How to calculate t_hit?
- Represent an edge tas:
$E d g e(t)=((A x+(C x-A x) t,(A y+(C y-A y) t,(A z+(C z-A z) t,(A w+(C w-A w) t)$
E.g. If $x=1$,

$$
\frac{A x+(C x-A x) t}{A w+(C w-A w) t}=1
$$

Solving for t above,

$$
t=\frac{A w-A x}{(A w-A x)-(C w-C x)}
$$

Inside/outside?

- t_hit can be "entering (t_in)" or "leaving (t_out)"
- Define: "entering" if A outside, C inside
- Why? As t goes [0-1], edge goes from outside (at A) to inside (at C)
- Define "leaving" if A inside, C outside
- Why? As t goes [0-1], edge goes from inside (at A) to inside (at C)

Entering

Leaving

Chop step by Step against 6 planes

- Initially $\stackrel{C}{\mathbf{C}}=\mathbf{1}$

t_in = 0, t_out = 1
Candidate Interval $(\mathrm{CI})=\left[\begin{array}{ll}0 & \text { to 1}\end{array}\right]$
- Chop against each of 6 planes
t_in =0, t_out $=0.74$
Candidate Interval $(\mathrm{Cl})=[0$ to 0.74$]$

Chop step by Step against 6 planes

t_in $=0.36, \quad$ t_out $=0.74$
Candidate Interval $(\mathrm{Cl}) \mathrm{Cl}=[0.36$ to 0.74$]$

Candidate Interval

- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e. $\mathrm{Cl}=\mathrm{t}$ _in to t_out
- Initialize Cl to $[0,1]$
- For each of 6 planes, calculate t_in or t_out, shrink Cl

- Conversely: values of t outside $\mathrm{Cl}=$ edge is outside CVV

Shortening Candidate Interval

Algorithm:

- Test for trivial accept/reject (stop if either occurs)
- Set CI to $[0,1]$
- For each of 6 planes:
- Find hit time t_hit
- If t_in, new t_in = max(t_in,t_hit)
- If t_out, new t_out = min(t_out, t_hit)
- If t_in > t_out => exit (no valid intersections)

Note: seeking smallest valid CI without t_in crossing t_out

Calculate choppped A and C

- If valid t in, t _out, calculate adjusted edge endpoints A, C as
- A_chop $=A+t$ in $(C-A)$ (calculate for $A x, A y, A z)$
- C_chop = A + t_out $(C-A)$ (calculate for $C x, C y, C z)$

3D Clipping Implementation

- Function clipEdge()
- Input: two points A and C (in homogenous coordinates)
- Output:
- 0 , if AC lies complete outside CVV
- 1, complete inside CVV
- Returns clipped A and C otherwise
- Calculate 6 BCs for $\mathrm{A}, 6$ for C

Store BCs as Outcodes

- Use outcodes to track in/out
- Number walls $x=+1,-1 ; y=+1,-1$, and $z=+1,-1$ as 0 to 5
- Bit i of A^{\prime} s outcode $=1$ if A is outside ith wall
- 1 otherwise
- Example: outcode for point outside walls 1, 2, 5

Wall no.
OutCode

0	1	2	3	4	5	
0	1	1	0	0	1	
\uparrow						

Trivial Accept/Reject using Outcodes

- Trivial accept: inside (not outside) any walls

	Wall no.	0	1	2	3	4
5						
A Outcode						
	0	0	0	0	0	0
C OutCode	0	0	0	0	0	0

Logical bitwise test: A | C == 0

- Trivial reject: point outside same wall. Example Both A and C outside wall 1

Wall no.	0	1	2	3	4	5
A Outcode	0	1	0	0	1	0
C OutCode	0	1	1	0	0	0

Logical bitwise test: A \& C != 0

3D Clipping Implementation

- Compute BCs for A,C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
- Compute tHit
- Update t_in, t_out
- Ift_in > t_out, early exit

3D Clipping Pseudocode

int clipEdge(Point4\& A, Point4\& C)
\{
double $\mathrm{tIn}=0.0$, tOut $=1.0, \mathrm{tHit}$;
double aBC[6], cBC[6];
int aOutcode $=0$, cOutcode $=0$;
.....find BCs for A and C
.....form outcodes for A and C
if((aOutCode \& cOutcode) != 0) // trivial reject return 0;
if((aOutCode | cOutcode) $==0$) // trivial accept return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
\{
if(cBC[i] < 0) // C is outside wall i (exit so tOut)
\{
tHit $=\mathrm{aBC}[\mathrm{i}] /(\mathrm{aBC}[\mathrm{i}]-\mathrm{cBC}[I]) ; \quad / /$ calculate tHit
tOut $=\mathbf{M I N}(\mathbf{t O u t}, \mathbf{t H i t}) ; \quad t=\frac{A w-A x}{(A w-A x)-(C w-C x)}$
\}
else if(aBC[i] < 0) // A is outside wall I (enters so th)
\{
tHit $=\mathrm{aBC}[\mathrm{i}] /(\mathrm{aBC}[\mathrm{i}]-\mathrm{cBC}[\mathrm{i}]), \quad / /$ calculate thit
tln = MAX(tIn, tHit);
\}
if(tIn > tOut) return 0; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is outside: tln has changed. Calculate A_chop $\{$
tmp.x = A.x + tln ${ }^{*}$ (C.x-A.x);
// do same for y, z, and w components
\}
If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop \{
C.x = A.x + tOut * (C.x-A.x);
// do same for y, z and w components
\}
A = tmp;
Return 1; // some of the edges lie inside CVV
\}

Polygon Clipping

- Not as simple as line segment clipping
- Clipping a line segment yields at most one line segment
- Clipping a concave polygon can yield multiple polygons

- Clipping a convex polygon can yield at most one other polygon

Clipping Polygons

- Need more sophisticated algorithms to handle polygons:
- Sutherland-Hodgman: clip any given polygon against a convex clip polygon (or window)
- Weiler-Atherton: Both clipped polygon and clip polygon (or window) can be concave

Tessellation and Convexity

- One strategy is to replace nonconvex (concave) polygons with a set of triangular polygons (a tessellation)
- Also makes fill easier

References

- Angel and Shreiner, Interactive Computer Graphics, $6^{\text {th }}$ edition
- Hill and Kelley, Computer Graphics using OpenGL, $3^{\text {rd }}$ edition, Chapter 9

