
Computer Graphics
CS 543 Lecture 12c

Polygon Filling & Antialiasing

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Defining and Filling Regions of Pixels

 Methods of defining region

 Pixel-defined: specifies pixels in color or geometric
range

 Symbolic: provides property pixels in region must
have

 Examples of symbolic:

 Closeness to some pixel

 Within circle of radius R

 Within a specified polygon

Pixel-Defined Regions

 Definition: Region R is the set of all pixels having
color C that are connected to a given pixel S

 4-adjacent: pixels that lie next to each other
horizontally or vertically, NOT diagonally

 8-adjacent: pixels that lie next to each other
horizontally, vertically OR diagonally

 4-connected: if there is unbroken path of 4-adjacent
pixels connecting them

 8-connected: unbroken path of 8-adjacent pixels
connecting them

Recursive Flood-Fill Algorithm

 Recursive algorithm

 Starts from initial pixel of color, intColor

 Recursively set 4-connected neighbors to newColor

 Flood-Fill: floods region with newColor

 Basic idea:

 start at “seed” pixel (x, y)

 If (x, y) has color intColor, change it to newColor

 Do same recursively for all 4 neighbors

(x, y+1)

(x, y)

(x, y-1)

(x+1, y)(x-1, y

Recursive Flood-Fill Algorithm

 Note: getPixel(x,y) used to interrogate pixel color at (x, y)

void floodFill(short x, short y, short intColor)

{

if(getPixel(x, y) == intColor)

{

setPixel(x, y);

floodFill(x – 1, y, intColor); // left pixel

floodFill(x + 1, y, intColor); // right pixel

floodFill(x, y + 1, intColor); // up pixel

floodFill(x, y – 1, intColor); // down pixel

}

}
(x, y+1)

(x, y)

(x, y-1)

(x+1, y)(x-1, y

Recursive Flood-Fill Algorithm

 Recursive flood-fill is blind

 Some pixels retested several times

 Region coherence is likelihood that an interior pixel
mostly likely adjacent to another interior pixel

 Coherence can be used to improve algorithm
performance

 A run: group of adjacent pixels lying on same scanline

 Fill runs(adjacent, on same scan line) of pixels

Region Filling Using Coherence
 Example: start at s, initial seed

Push address of seed pixel onto stack

while(stack is not empty)

{

Pop stack to provide next seed

Fill in run defined by seed

In row above find reachable interior runs

Push address of their rightmost pixels

Do same for row below current run

}

Note: algorithm most efficient if there is span coherence (pixels on scanline
have same value) and scan-line coherence (consecutive scanlines similar)

Pseudocode:

Filling Polygon-Defined Regions

 Problem: Region defined polygon with vertices

Pi = (Xi, Yi), for i = 1…N, specifying sequence of P’s
vertices

P1

P7

P6

P5

P4

P3

P2

Filling Polygon-Defined Regions

 Solution: Progress through frame buffer scan line by
scan line, filling in appropriate portions of each line

 Filled portions defined by intersection of scan line
and polygon edges

 Runs lying between edges inside P are filled

 Pseudocode:

for(each scan Line L)

{

Find intersections of L with all edges of P

Sort the intersections by increasing x-value

Fill pixel runs between all pairs of intersections

}

Filling Polygon-Defined Regions

 Example: scan line y = 3 intersects 4 edges e3, e4, e5, e6

 Sort x values of intersections and fill runs in pairs

 Note: at each intersection, inside-outside (parity), or vice versa

P1

P7

P6

P5

P4

P3

P2

e6

e5 e4

e3

3

Data Structure

Filling Polygon-Defined Regions

 Problem: What if two polygons A, B share an edge?

 Algorithm behavior could result in:

 setting edge first in one color and the another

 Drawing edge twice too bright

 Make Rule: when two polygons share edge, each polygon
owns its left and bottom edges

 E.g. below draw shared edge with color of polygon B

A

B

Filling Polygon-Defined Regions

 Problem: How to handle cases where scan line intersects
with polygon endpoints to avoid wrong parity?

 Solution: Discard intersections with horizontal edges and
with upper endpoint of any edge

See 0

See 2

See 1

See 0

See 1

See 2

See 0

Antialiasing

 Raster displays have pixels as rectangles

 Aliasing: Discrete nature of pixels introduces
“jaggies”

Antialiasing

 Aliasing effects:

 Distant objects may disappear entirely

 Objects can blink on and off in animations

 Antialiasing techniques involve some form of
blurring to reduce contrast, smoothen image

 Three antialiasing techniques:

 Prefiltering

 Postfiltering

 Supersampling

Prefiltering

 Basic idea:

 compute area of polygon coverage

 use proportional intensity value

 Example: if polygon covers ¼ of the pixel

 Pixel color = ¼ polygon color + ¾ adjacent region color

 Cons: computing polygon coverage can be time
consuming

Supersampling

 Assumes we can compute color of any location (x,y) on screen

 Sample (x,y) in fractional (e.g. ½) increments, average samples

 Example: Double sampling = increments of ½ = 9 color values
averaged for each pixel

Average 9 (x, y) values
to find pixel color

Postfiltering

 Supersampling weights all samples equally

 Post-filtering: use unequal weighting of samples

 Compute pixel value as weighted average

 Samples close to pixel center given more weight

1/2

1/161/16

1/16

1/16 1/16 1/16

1/16

1/16

Sample weighting

Antialiasing in OpenGL

 Many alternatives

 Simplest: accumulation buffer

 Accumulation buffer: extra storage, similar to frame
buffer

 Samples are accumulated

 When all slightly perturbed samples are done, copy
results to frame buffer and draw

Antialiasing in OpenGL

 First initialize:

 glutInitDisplayMode(GLUT_SINGLE |

GLUT_RGB | GLUT_ACCUM | GLUT_DEPTH);

 Zero out accumulation buffer

 glClear(GLUT_ACCUM_BUFFER_BIT);

 Add samples to accumulation buffer using

 glAccum()

Antialiasing in OpenGL

 Sample code

 jitter[] stores randomized slight displacements of camera,

 factor, f controls amount of overall sliding

glClear(GL_ACCUM_BUFFER_BIT);

for(int i=0;i < 8; i++)

{

cam.slide(f*jitter[i].x, f*jitter[i].y, 0);

display();

glAccum(GL_ACCUM, 1/8.0);

}

glAccum(GL_RETURN, 1.0);

jitter.h

-0.3348, 0.4353

0.2864, -0.3934

……

References

 Angel and Shreiner, Interactive Computer Graphics,
6th edition

 Hill and Kelley, Computer Graphics using OpenGL, 3rd

edition, Chapter 9

