
CS 4731/543: Computer Graphics
Lecture 7 (Part II): Raytracing (Part I)

Emmanuel Agu

Raytracing

n Global illumination-based rendering method
n Simulates rays of light, natural lighting effects
n Because light path is traced, handles some effects that are

tough for openGL:
n Shadows
n Multiple inter-reflections
n Transparency
n Refraction
n Texture mapping

n Newer variations… e.g. photon mapping (caustics,
participating media, smoke)

n Note: raytracing can be whole semester graduate course
n Today: start with high-level description

Raytracing Uses

n Entertainment (movies, commercials)
n Games (pre-production)
n Simulation (e.g. military)
n Image: Internet Ray Tracing Contest Winner (April 2003)

How Raytracing Works

n OpenGL is object space rendering
n start from world objects, rasterize them

n Ray tracing is image space method
n Start from pixel, what do you see through this pixel?

n Looks through each pixel (e.g. 640 x 480)
n Determines what eye sees through pixel
n Basic idea:

n Trace light rays: eye -> pixel (image plane) -> scene
n If a ray intersect any scene object in this direction

• Yes? render pixel using object color
• No? it uses the background color

n Automatically solves hidden surface removal problem

Case A: Ray misses all objects

Case B: Ray hits an object

Case B: Ray hits an object

§ Ray hits object: Check if hit point is in shadow, build
secondary ray (shadow ray) towards light sources.

Case B: Ray hits an object

§If shadow ray hits another object before light source: first intersection
point is in shadow of the second object. Otherwise, collect light
contributions

Case B: Ray hits an object

§First Intersection point in the shadow of the second object is
the shadow area.

Reflected Ray

§When a ray hits an object, a reflected ray is generated which is
tested against all of the objects in the scene.

Reflection: Contribution from the reflected ray

Transparency

§If intersected object is transparent, transmitted ray is generated and
tested against all the objects in the scene.

Transparency: Contribution from transmitted ray

Reflected rays can generate other reflected rays that can generate
other reflected rays, etc. Case A: Scene with no reflection rays

Reflected Ray: Recursion

Case B: Scene with one layer of reflection

Reflected Ray: Recursion

Case C: Scene with two layers of reflection

Reflected Ray: Recursion

Ray Tree

n Reflective and/or transmitted rays are continually generated until
ray leaves the scene without hitting any object or a preset
recursion level has been reached.

Ray-Object Intersections

n So, express ray as equation (origin is eye, pixel
determines direction)

n Define a ray as:
R0 = [x0, y0, z0] - origin of ray
Rd = [xd, yd, zd] - direction of ray

n then define parametric equation of ray:

R(t) = R0 + Rd * t with t > 0.0

n Express all objects (sphere, cube, etc) mathematically
n Ray tracing idea:

n put ray mathematical equation into object equation
n determine if real solution exists.
n Object with smallest hit time is object seen

Ray-Object Intersections

n Dependent on parametric equations of object
n Ray-Sphere Intersections
n Ray-Plane Intersections
n Ray-Polygon Intersections
n Ray-Box Intersections
n Ray-Quadric Intersections

(cylinders, cones, ellipsoids, paraboloids)

Writing a RayTracer

n The first step is to create the model of the objects
n One should NOT hardcode objects into the program, but instead use

an input file.
n This is called retained mode graphics
n We will use SDL
n Ray trace SDL files
n The output image/file will consist of three intensity values (Red,

Green, and Blue) for each pixel.

Accelerating Ray Tracing

n Ray Tracing is very time-consuming because of intersection
calculations

n Each intersection requires from a few (5-7) to many (15-20)
floating point (fp) operations

n Example: for a scene with 100 objects and computed with a
spatial resolution of 512 x 512, assuming 10 fp operations per
object test there are about 250,000 X 100 X10 = 250,000,000 fps.

§ Solutions:
§ Use faster machines
§ Use specialized hardware, especially parallel processors.
§ Note: ray tracing does not use 3D graphics card (new drn)
§ Speed up computations by using more efficient algorithms
§ Reduce the number of ray - object computations

Reducing Ray-Object Intersections

n Adaptive Depth Control: Stop generating reflected/transmitted
rays when computed intensity becomes less than certain threshold.

n Bounding Volumes:
n Enclose groups of objects in sets of hierarchical bounding volumes
n First test for intersection with the bounding volume
n Then only if there is an intersection, against the objects enclosed by

the volume.

n First Hit Speed-Up: use modified Z-buffer algorithm to determine
the first hit.

Writing a Ray Tracer

n Our approach:
n Give arrangement of minimal ray tracer
n Use that as template to explain process

n Minimal?
n Yes! Basic framework
n Just two object intersections
n Minimal/no shading

n Paul Heckbert (CMU):
n Ran ray tracing contest for years
n Wrote ray tracer that fit on back of his business card

Pseudocode for Ray Tracer

n Basic idea

color Raytracer{
for(each pixel direction){
determine first object in this pixel direction
calculate color shade
return shade color

}
}

More Detailed Ray Tracer Pseudocode (fig 12.4)

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r++){

for(int c = 0; c < nCols; c++){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color of light to eye along ray
6. Set rc-th pixel to this color

}
}

Define Objects and Light Sources in Scene

n Already know SDL, use it for input format
n Previously, in our program

Scene scn;
…..
scn.read(“your scene file.dat”); // reads scene file
scn.makeLightsOpenGL(); // builds lighting data struct.
scn.drawSceneOpenGL(); // draws scene using OpenGL

n Previously, OpenGL did most of the work, rendering
n Now, we replace drawSceneOpenGL with ray tracing code
n Minimally use OpenGL for setting pixel color

Set OpenGL up for 2D

n Ray tracing will do all the work (figure our pixel color)
n Set OpenGL up for 2D drawing
n Just like project 2 (dino.dat, mandelbrot set)

// set up OpenGL for simple 2D drawing
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, nCols, 0, nRows);
glDisable(GL_LIGHTING); //we will handle lighting
….
do ray tracing

Ray Tracer Pseudocode

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r++){

for(int c = 0; c < nCols; c++){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color of light to eye along ray
6. Set rc-th pixel to this color

}
}

Setting RC-th pixel to Calculated Color

n Can do as before. i.e. first set drawing color, then send vertex

glColor3f(red, green blue); // set drawing color
glPointSize(1.0); // set point size to 1

//…. .then send vertices
glBegin(GL_POINTS)

glVertex2i(100, 130);
glEnd();

n But ray tracing can take time.. minutes, days, weeks!! ☺?
n Use notion of blocksize to speedup ray tracing

Setting RC-th pixel to Calculated Color

n Break screen into blocks (fat pixels)
n Ray trace only top-left pixel of block
n 1 calculation, set entire block to calculated color
n E.g. BlockSize = 3, ray trace, top-left pixel, set entire block to green

n Affects resolution of picture
n Initially use large blocksize to verify code, then set to 1

Modified Ray Tracer Pseudocode Using BlockSize

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color (clr) of light to eye along ray

glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Modified Ray Tracer Pseudocode Using BlockSize

Define the objects and light sources in the scene
Set up the camera
For(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color (clr) of light to eye along ray

glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Build the RC-th Ray

n Parametric expression ray starting at eye and passing
through pixel at row r, and column c

n But what exactly is this dirrc(t) ?
n need to express ray direction in terms of variables r and c
n Now need to set up camera, and then express dirrc in

terms of camera r and c

tdireyetr
tdirectionoriginray

rc+=
+=

)(
)(

Modified Ray Tracer Pseudocode Using BlockSize

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

Set up Camera Geometry

n As before, camera has axes (u, v, n) and position eye
with coordinates (eye.x, eye.y, eye.z)

n Camera extends from –W to +W in u-direction
n Camera extends from –H to +H in v-direction

W

(uc , vr)

Column c

u

H

-H

-W

Row r

v

Set up Camera Geometry

n Viewport transformation?
n Simplest transform: viewport is pasted onto window at

near plane. So,
n viewport (screen) width: 1 to nCols ….(or 0 to nCols –1)
n Window width: -W to +W

n Can show that a given c maps to

n for c = 0, 1,……nCols - 1

nCols
c

WWuc
2

+−=

Set up Camera Geometry

n Similarly
n viewport (screen) height: 1 to nRows ….(or 0 to nRows –1)
n Window width: -H to +H

n Can show that a given r maps to

n for r = 0, 1,……nRows - 1

nRows
r

HHvr
2

+−=

Set up Camera Geometry

n Near plane lies distance N along n axis
n Camera has aspect ratio aspect and view angle θ
n Such that

n Thus pixel (r, c) location
expressed in terms of u v and n

Near plane

Eye

N

H

v

vun rc vuNeye ++− n

-H

θ

)2/tan(θNH = aspectHW ⋅=

Set up Camera Geometry

n So, pixel location ..Near plane lies distance N along n axis

n Parametric form of ray starting at eye and going through
pixel is then. Note: eye is at t =0, hits pixel at t = 1

n Manipulating expressions, if

vun rc vuNeye ++−=

tvuNeyeteyetr rc)()1()(vun ++−+−=

teyetr rcdir+=)(

vundir)1
2

()1
2

(−+−+−=
nRows

r
nCols

c
WNrc

Set up Camera Geometry

n So, ray starts at t =0, hits pixel at t = 1
n Ray hits scene objects at time thit > 1
n If thit < 0, object is behind the eye
n For a given ray, if two objects have hit times t1 and t2,

smaller hit time is closer to eye
n In fact, for all hit times along ray, smallest hit time is closest
n If we know hit time of an object, thit, we can solve for

object’s position (x, y, z) in space as

n Do this separately for x, y and z
n Thus automatically, ray tracing solves Hidden surface

removal problem

hitrchit teyeP dir+=

Where are we?

Define the objects and light sources in the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){

for(int c = 0; c < nCols; c+= blockSize){
1. Build the rc-th ray
2. Find all object intersections with rc-th ray
3. Identify closest object intersection
4. Compute the “hit point” where the ray hits the

object, and normal vector at that point
5. Find color (clr) of light to eye along ray
glColor3f(clr.red, clr.green, clr.blue);
glRecti(c, r, c + blockSize, r + blockSize);

}
}

References

n Hill, chapter 12
n http://www.siggraph.org/education/materials/HyperGraph

/raytrace/rtrace0.htm

