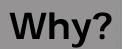


CS 563 Advanced Topics in Computer Graphics *The Use of Points as a Display Primitive*

by Jared Krechko

Overview


- What it is
- Why we do it
- How to do it
- Examples and Advances

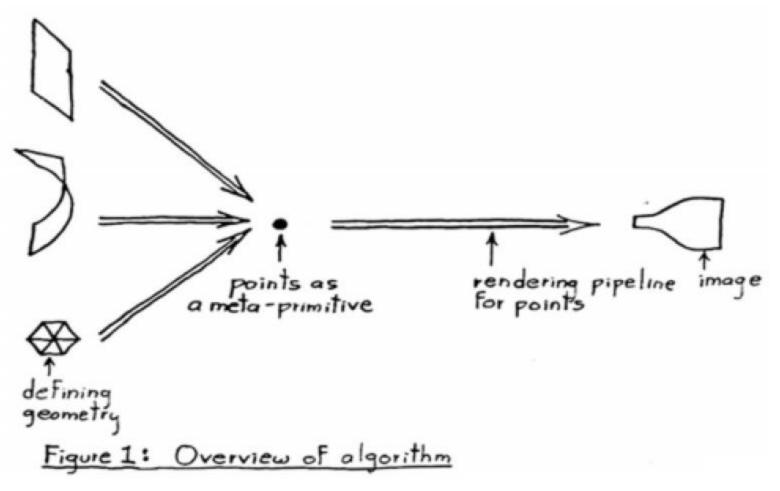
What is point based rendering?

- Simply, using points to display objects
- First proposed in 1985, recent resurgence

http://www-i8.informatik.rwth-aachen.de/teaching/ws04/seminar/seminar_ws04.html

- Separates geometry
- Fewer overall points to handle
- Lower memory requirement
- Accurate displays

Contributing theories


- Smoke, trees, clouds and fire already modeled
- Texture mapping
- Bump mapping
- Tabular arrays for terrain
- Object order rendering
- Image order rendering

Problems to solve

- How to render
 - New primitive means new modeling and rendering algorithm
- Model and render at the same time?
- Rendering is then converting from geometric description to new primitive
- Display using standard format

How to render

Object order or image order?

- Object Order
 - Render objects in order in which they are computed
- Image order
 - Construct image pixel-by-pixel
 - Objects contribute to a pixel computed at rendering time
- Which to choose?
 - Object order
 - Correct visibility and filtering

Complexity vs. Coherence

- Geometry = coherence
- Expensive coherence
- Why track extra coherence?
- PBR = no coherence

Overview of How

- Geometry -> points, then render
- Rendering complicated
- Goal: take array of points and display them so they appear continuous
- Texture in interior of point array properly filled
- Edge of array anti-aliased
- Array must obscure its background

Problems?

- No constraint on spatial perturbation
 - Points within array could move anywhere
- Must be able to render randomly

Example

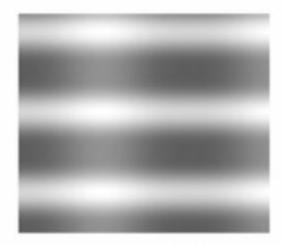


Fig 6b

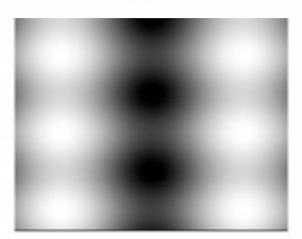


Fig 6a

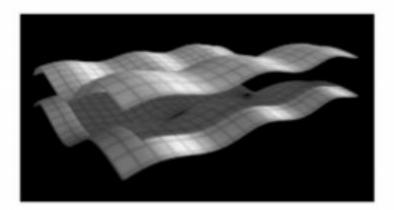


Fig 6c Fig 7

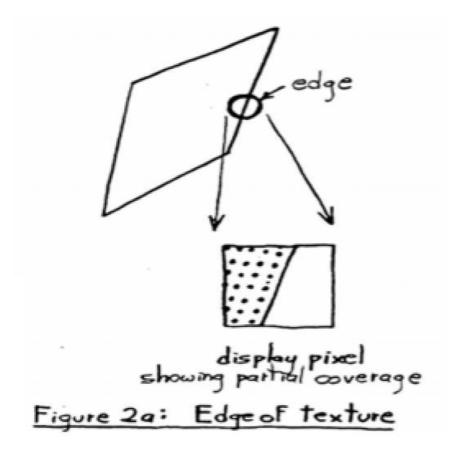
Point defined

- A *source point* is defined by:
 - (x, y, z, r, g, b, a)
- x, y, and z are spatial attributes
- Any attribute can be perturbed
- initial grid parametric coordinates
- For now, u=x, v=y
- Initial grid is a texture

Selecting points to render

- Each iteration a point is sent through the rendering pipeline
- May choose:
 - Sequentially based on parametric space
 - Procedurally
 - Randomly
- This algorithm uses random

Perturbation

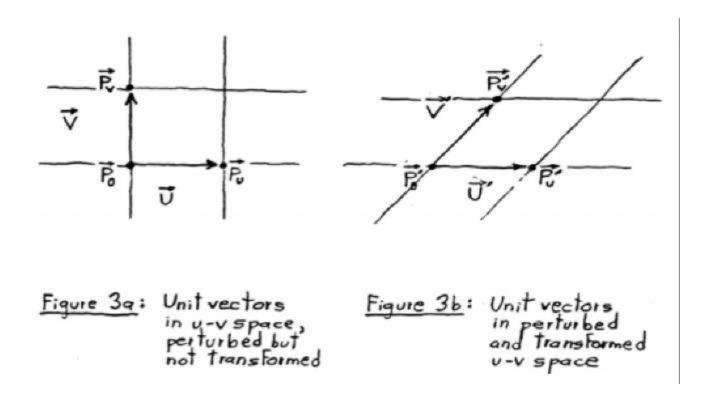

- Any operation which changes an attribute
- Limits
 - Non-spatial attributes computer
 - Spatial attributes discontinuous

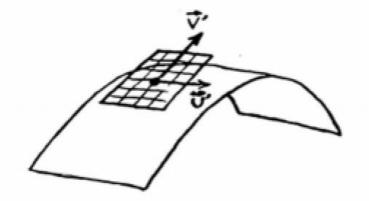
Transformation and Clipping

- Transform:
 - Multiply [x, y, z, 1] by 4x4 transform matrix followed by perspective divide
 - Don't divide z by w so z-clipping can be done
- Clipping:
 - Compare transformed x, y, and z coordinates against a frustum of vision

- Contribution of each source to each pixel proportional to distance from pixel center
- Filter function at each pixel, highest at center
- Radially symmetric Gaussian here
- Contribution computed distance to pixel weighted

Edge of Texture




Foldover Points

- Density of source or partial coverage along edges
- Pre-normalize the contributions
- Sum to unity
- No unity = partial coverage
- Sum of contributions = coverage

- Predicting the density of source points
 - Do it before rendering
 - Use to compute normalizing divisor for weight

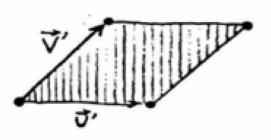


Figure 3c: Tangent plane to surface in small neighborhood Figure 3d: Area of parallelogram gives density of source points

$$A = \left| \det \left[J_{\mathbf{F}}(\mathbf{p}_{0}) \right] \right| = \left| \det \left[\begin{matrix} x_{u} - x_{0} & x_{v} - x_{0} \\ y_{u} - y_{0} & y_{v} - y_{0} \end{matrix} \right] \right|$$

- Gives density of source points
- Normalizing divisor for any source point given any view transform
- Interior sum to unity
- Edges sum to coverage

Error in Density

Leads to artifacts

$$\varepsilon = \left| \frac{\det \left[J_{\mathbf{F}}(\mathbf{p}_{0}^{'}) \right]}{\det \left[J_{\mathbf{F}}(\mathbf{q}_{0}^{'}) \right]} - 1 \right|$$

- Large E = artifacts
- Really large E = initial resolution insufficient
 - Low pass filter perturbation function
 - Increase spatial resolution of initial grid

Where we are

- Point and tangent plane -> image space
- Point in image space
- Area point would cover if surface element
- Position in image space separate from display sample points in image plane

Filter Radius

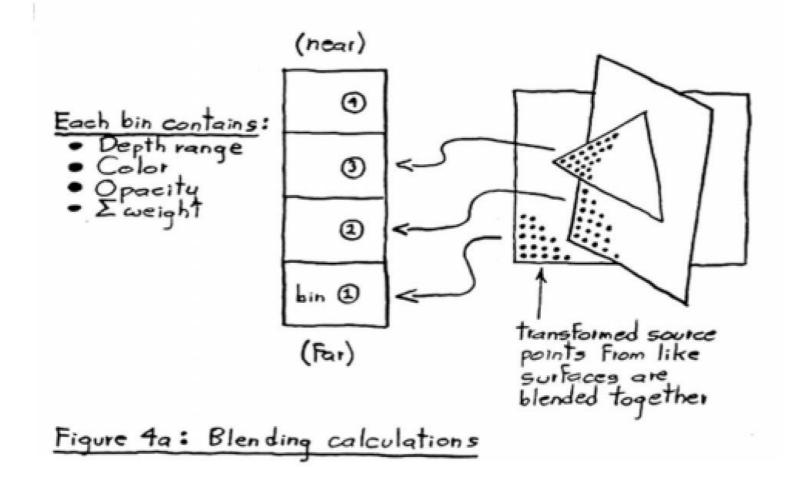
- Function of
 - Source density
 - Display sample density
- Minification
 - Avoid aliasing of source function
- Magnification
 - Avoid aliasing of reconstruction
- Radius decreases as source density increases

Filter Radius

- Function zero beyond small neighborhood
- Cutoff makes contributions vary slightly
- Computed as partial coverage
- Fix by extend Gaussian

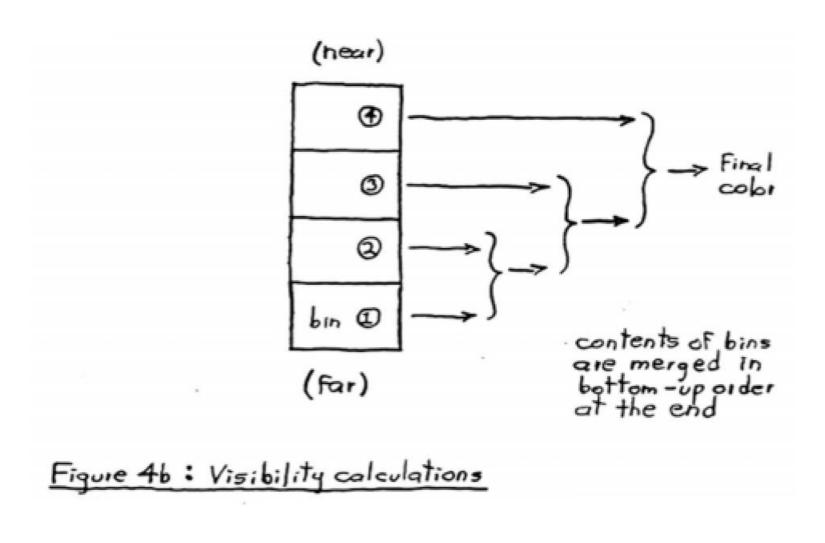
Hidden Surface Removal

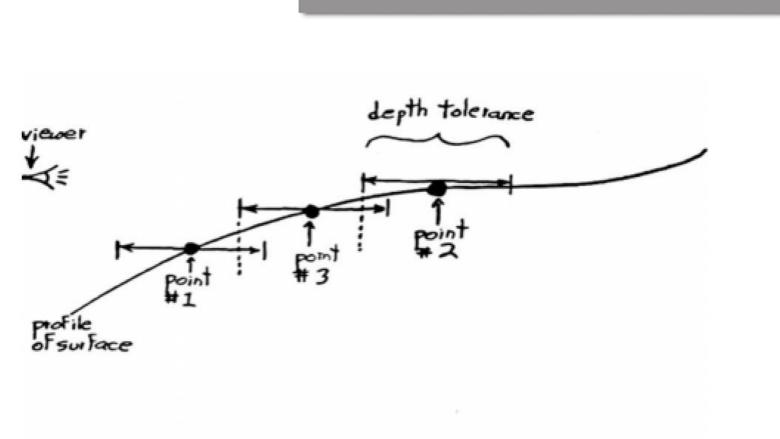
- Contribution of source points
 - Blending


 $color_{new} = color_{old} + (color_{incoming} \times weight_{incoming})$

Visibility

```
color_{new} = color_{old} \times (1 - \alpha_{incoming}) + color_{incoming} \times \alpha_{incoming}
```


- Only if blending already done
- Blending computations more frequent

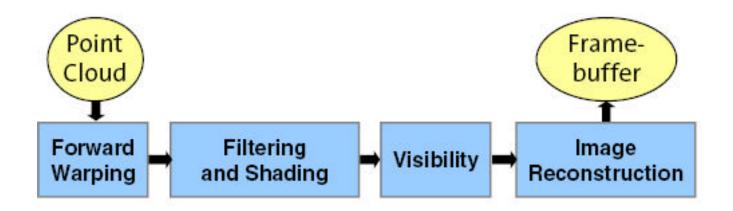

Bins

Must check normals before blending

Bins

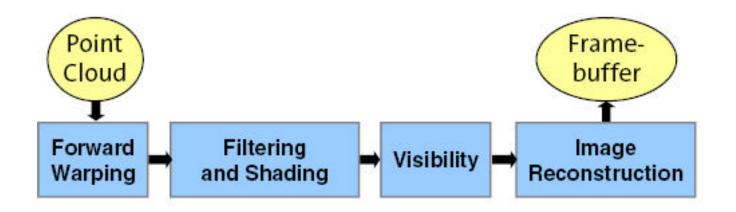
Figure 5: Depth comparisons with tolerance

Finally, Geometry


- Valid geometry
 - Break surface into points
 - Continuous and differentiable in small neighborhood around each point
 - Find two non-collinear on a tangent plane approximating surface at point

Valid Geometry

- Allows
 - Polygons
 - Spheres
 - Conic sections
 - Any parametrically defined surface

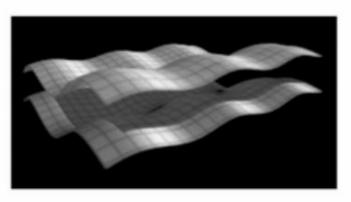
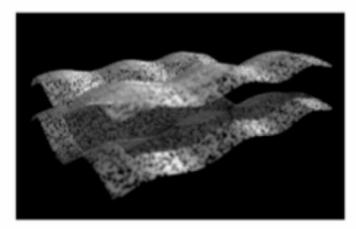

More simple

- Surfels
- Neighborhood data representation

More simple

- Forward Warping = Perspective Projection
- Filtering and Shading
- Last two done simultaneously

http://graphics.ethz.ch/publications/tutorials/eg2002/powerpoint/Rendering.Zwicker.pdf

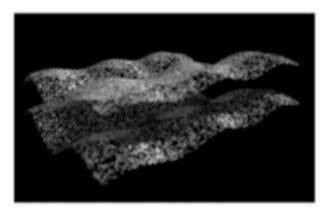

Fig 7

Figure 9b

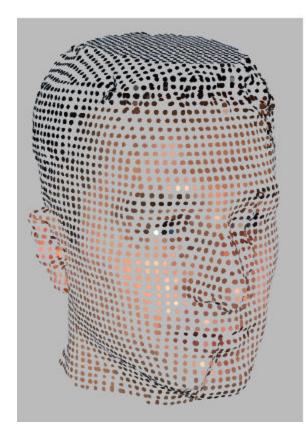


Figure 8

Figure 9a

http://www-sop.inria.fr/reves/publications/data/2001/SD01/?LANG=gb

Advances

- Splatting (QSplat)
- Depth of Field
- LOD Changes
- Mobile Devices
- More Hardware Support
- Polygon/Point rendering
- Taking advantage of other new algorithms
- Virtual Reality

Conclusions

- Standard rendering algorithm for any geometry
- Rendering in object order
- Arrays of points with no underlying geometry
- Simple primitive, no coherence

Questions?

- Marc Stamminger, <u>http://www-</u> <u>sop.inria.fr/reves/Marc.Stamminger/pbr/</u>
- Matthias Zwicker, <u>http://graphics.ethz.ch/publications/tutorials/eg2002/powerpoint/Rend</u> <u>ering.Zwicker.pdf</u>
- Marc Levoy, Turner Whitted, <u>http://graphics.stanford.edu/papers/points/point-with-scanned-figs.pdf</u>
- J. Krivanek, <u>http://www.cgg.cvut.cz/~xkrivanj/papers/workshop2003/workshop20</u> <u>03-abstract.pdf</u>
- Liviu Coconu, Hans-Christian Hege, <u>http://delivery.acm.org/10.1145/590000/581903/p43-</u> <u>coconu.pdf?key1=581903&key2=9082482111&coll=GUIDE&dl=GUIDE</u> <u>&CFID=41482871&CFTOKEN=71845390</u>
- Miguel Sainz, Renato Pajarola, Roberto Lario, <u>http://www.ics.uci.edu/~graphics/pub/PointsReloaded.pdf</u>