
CS 563 Advanced Topics in
Computer Graphics

by Emmanuel Agu

PBRT Flow

§ Parsing: uses lex and yacc: core/pbrtlex.l and
core/pbrtparse.y

§ After parsing, a scene object is created
(core/scene.*)

§ Rendering: Scene::Render() is invoked.

(generates sample positions
for eye rays and integrators)

PBRT Architecture

Geometric classes

§ Chapter 2: Representation and operations for
the basic math:
§ points, vectors and rays.
§ core/geometry.* and core/transform.*

§ Chapter 3 (Shapes): Actual scene geometry
such as triangles and spheres.

§ Chapter 4: Acceleration structures (uniform
grid, kd-tree, BVH, etc)

Coordinate system

§ Points, vectors and normals:
§ 3 floating-point coordinate values: x, y, z defined

under a coordinate system.

§ A coordinate system defined by:
§ Origin + frame

§ Handedness?

x

y z

x

Y

+z

OpenGL uses
right hand
coordinate
system

PBRT uses right
hand coordinate
system

Vector-Point
Relationship

§ Diff. b/w 2 points =
vector

v = Q – P

§ Sum of point and
vector = point

v + P = Q

P

Q

v

Vector Operations

§ Define vectors

§ and scalar, s

),(32,1 aaa=a

),(32,1 bbb=b),(3322,11 bababa +++=+ ba

Then vector addition:

a a+b

b

Vector Operations

§ Scaling vector by a
scalar

),,(321 sasasas =a
))(),(),((332211 bababa −+−+−+=

− ba

Note vector subtraction:

a

b

a-ba

2.5a

Magnitude of a Vector

§ Magnitude of a

§ Normalizing a vector (unit vector)

§ Note magnitude of normalized vector = 1. i.e

22
2

2
1|| naaa ++=a

magnitude
vector

==
a
a

â

1.......... 22
2

2
1 =++ naaa

Vectors

class Vector {
public:

<Vector Public Methods>
float x, y, z;

}
(no need to use selector and mutator)

Dot and cross product

Dot(v, u)
AbsDot(v, u)
Cross(v, u)

(v, u, v×u) form a
coordinate system

θcosuvuv =⋅

θsinuvuv =×

v

u

?

()
()
() zyyxz

zxxzy

yzzyx

uvuvuv

uvuvuv

uvuvuv

−=×

−=×

−=×

Normalization

§ PBRT vector methods
§ Length(v)- returns length of vector, v
§ LengthSquared(v) – (returns length of v)2

§ Normalize(v) returns a vector, does not normalize in place

Coordinate system from
a vector

Construct a local coordinate system from a
vector.

inline void CoordinateSystem(const Vector &v1,
Vector *v2, Vector *v3)

§V1 normalized already.
§Construct v2: perpendicular vector of v1 by

§ Zero out 1 component of v1
§ Swap other 2 components

§V1 x v2 = v3: 3rd vector

Points

Points are different from vectors
explicit Vector(const Point &p);

You have to convert a point to a vector explicitly (no
accidents, know what you are doing).

Q Vector v=p;

R Vector v=Vector(p);

Operations for points

Vector v; Point p, q, r; float a;

q=p+v;
q=p-v;
v=q-p;

r=p+q;
a*p; p/a;

PBRT supports:
Distance(p,q);
DistanceSquared(p,q);

p

q

v

(This is only for the operationa p+ß q.)

Normals

§ A surface normal (or just normal) is a vector
that is perpendicular to a surface at a
particular position.

Normals

§ Different than vectors sometimes
§ Particularly when applying transformations.
§ Implementation similar to Vector, except
§ Normal cannot be added to a point
§ Cannot take the cross product of two normals.

§ Normal is not necessarily normalized.
§ Conversion between Vector and Normal

must be explicit

Rays

class Ray {
public:
<Ray Public Methods>
Point o;
Vector d;
mutable float mint, maxt;
float time;

};

o

d

mint

maxt

∞≤≤+= ttt 0)(dor

(They may be changed even if Ray is const.)

(for motion blur)

Ray r(o, d);
Point p=r(t);

Initialized as RAY_EPSILON to
avoid self intersection.

Ray differentials

§ Used to estimate projected area for a small part of a
scene

§ Used for texture antialiasing.
class RayDifferential : public Ray {
public:
<RayDifferential Methods>
bool hasDifferentials;
Ray rx, ry;

};

Bounding boxes

§ Avoid intersection tests inside a volume if ray doesn’t
hit bounding volume.

§ Benefits depends on:
§ Expense of testing volume vs objects inside
§ Tightness of the bounding volume.

§ Popular bounding volumes: sphere, axis-aligned
bounding box (AABB), oriented bounding box (OBB).

x

y z

Bounding boxes

class BBox {
public:
<BBox Public Methods>
Point pMin, pMax;

}

Point p,q; BBox b; float delta;
BBox(p,q) // no order for p, q
Union(b,p) – Given point & Bbox, return new larger bounding box

containing point (bbox) and Bbox.

BBox::pMax

BBox::pMin

Union(b, b2)

Bounding boxes

Point p,q; BBox b;
b.Expand(delta): Expand old bounding box by factor delta

pMax + delta

pMin - delta

Bounding boxes

Point p,q; BBox b;
§ b.Overlaps(b2): do two bounding boxes overlap

each other in x,y,z
§ Returns boolean. True (overlaps) or false (does not

overlap)
b

b2

Bounding boxes

Point p,q; BBox b;
§ b.Inside(p): Is point p inside bounding box?

Returns boolean (true or false)
§ Volume(b): Returns volume of bounding volume

(x * y * z)
pMax

pMin

Bounding boxes

Point p,q; BBox b;
b.MaximumExtent()(which bounding box axis is the

longest; useful for building kd-tree)
b.BoundingSphere(c, r) (returns center and

radius of bounding sphere)
§ Example: generate random ray which intersects scene

geometry
pMax

pMin

Transformations

class Transform {
...
private:
Reference<Matrix4x4> m, mInv;

}

§ Transform stores element of 4x4 matrix
§ Also computes and stores matrix inverse, mInv

(avoid repeatedly computing inverse)

save space, but can’t be modified after construction

Transformations

§ Translate(Vector(dx,dy,dz))
§ Scale(sx,sy,sz)
§ RotateX(a)



















=

1000
100
010
001

),,(
dz
dy
dx

dzdydxT



















=

1000
000
000
000

),,(
sy

sy
sx

szsysxS


















−

=

1000
0cossin0
0sincos0
0001

)(
θθ
θθ

θxR

T1)()(θθ xx RR =−

Question: How does x-roll
matrix above differ based
on axes handedness?

Rotation around an
arbitrary axis

§ Rotate(a, Vector(1,1,1))

a

?

vv’

Rotation around an
arbitrary axis

§ Rotate(a, Vector(1,1,1))

a

p v1
v2

v

?

v’ a)a(vp ⋅=

pvv1 −=

avv ×= 12 12 vv =

θθ sincos' 21 vvv ++= p

LookAt Transformation

§ Caller specifies:
§ camera (eye position),
§ Look at point
§ Up vector

§ Want to compute 4x4 transform matrix that
converts from world space to eye space

uv

n

world

x

y

z

P

Look-at

§ LookAt(Point &pos, Point look, Vector
&up)

pos

lookup

Vector dir=Normalize(look-pos);
Vector right=Cross(dir, Normalize(up));
Vector newUp=Cross(right,dir);

pos

dir

0 100

Applying transformations

§ Point: q=T(p), T(p,&q)
use homogeneous coordinates implicitly

§ Vector: u=T(v), T(u, &v)
§ Normal: treated differently than vectors

because of anisotropic transformations
0T ==⋅ tntn

() 0T =MtSn
() 0'' T =tn

0TT =MtSn
IMS =T

T−= MS
§ Transform should keep its inverse

§ For orthonormal matrix, S=M

Point: (p, 1)
Vector: (v, 0)

Applying transformations

§ Transform Bbox?
§ transform its 8 corners and expand to include all 8 points.

Differential geometry

§ DifferentialGeometry: a self-contained
representation for a particular point on a surface so
that all the other operations in pbrt can be executed
without referring to the original shape. Contains

§ Position
§ Surface normal
§ Parameterization
§ Parametric derivatives
§ Derivatives of normals
§ Pointer to shape

Ray-Surface Intersection

Ray-Plane Intersection

§ Ray:

§ Plane:
§

§ Solve for intersection
§ Substitute ray equation into plane

equation

t= +P O D
rr r

() 0
0ax by cz d

− • =′
+ + + =

P P N
r r r

O
v

D
rt

0 t≤ < ∞ N
r

− • = + − • =′ ′

− •′
= −

•

rr r r r r r

r r r
r r

() () 0

()

t

t

P P N O D P N

O P N
D N

P
r

′P
r

Sphere

§ A sphere of radius r at the origin
§ Implicit: x2+y2+z2-r2=0
§ Parametric: f(? ,?)

x=rsin? cos?
y=rsin? sin?
z=rcos?

Sphere

Algebraic solution

§ Perform in object space, WorldToObject(r, &ray)
§ Assume that ray is normalized for a while

2222 rzyx =++

() () () 2222 rtdotdotdo zzyyxx =+++++

02 =++ CBtAt

222
zyx dddA ++=

)(2 zzyyxx odododB ++=
2222 roooC zyx −++=

Step 1

Algebraic solution

A
ACBB

t
2

42

0

−−−
=

A
ACBB

t
2

42

1

−+−
=

If (B2-4AC<0) then the ray misses the sphere. B2-4AC=0?
Step 2

Step 3

Calculate t0 and test if t0<0

Step 4

Calculate t1 and test if t1<0

Cylinder

maxφφ u=
φcosrx =
φsinry =

)(minmaxmin zzvzz −+=

§First consider sides
§Later consider cap/base

Cylinder

§ Implicit equation for cylinder

§ Substituting in ray equation

§ Giving 02 =++ CBtAt

22
yx ddA +=

)(2 yyxx ododB +=
222 rooC yx −+= Solve for t

0222 =−+ ryx

() () 222 rtdotdo yyxx =+++

Cylinder

References/Shamelessly
stolen

§ Pat Hanrahan, CS 348B, Spring 2005 class slides
§ Yung-Yu Chuang, Image Synthesis, class slides,

National Taiwan University, Fall 2005
§ Kutulakos K, CSC 2530H: Visual Modeling, course

slides
§ UIUC CS 319, Advanced Computer Graphics Course

slides

