CS 563 Advanced Topics In
Computer Graphics

by Emmanuel Agu

= Parsing: uses lex and yacc: core/pbrtlex.l and
core/pbrtparse.y

= After parsing, a scene object is created
(core/scene.*)

= Rendering: Scene: : Render () Is invoked.

[Sampler] | Camera

Sample

Scene::Render() J{ ’[Integrators
Radiance

Radiance

[Shape::Intersect()] [Shape::Intersect()

[| | |

[Primitive :Intersect () [reorereienreees [Primitive::Intersect()]

\\Herseutlon /‘/

[Accelerator::Intersect()

Ray Intersection

Ray

BSDF
Surfacelntegrator::Li(} Intersection: :GetBSLF()

Radiance
Rﬂdidﬂt/ \?.admnue

[Light::Sample_ L() """""""""""" Light::Sample_L()]

= Chapter 2: Representation and operations for
the basic math:
* points, vectors and rays.
= core/geometry.* and core/transform.*

= Chapter 3 (Shapes): Actual scene geometry
such as triangles and spheres.

= Chapter 4: Acceleration structures (uniform
grid, kd-tree, BVH, etc)

= Points, vectors and normals:

» 3 floating-point coordinate values: X, y, z defined
under a coordinate system.

= A coordinate system defined by:
*= Origin + frame
» Handedness?

PBRT uses right OpenGL uses
: Y right hand
hand coordinate A g _
y A , system coordinate
system
> X
X +7
>

= Diff. b/w 2 points =
vector

v=Q-F

= Sum of point and *
vector = point v
v+P=0Q Q

= Define vectors

a=(a,a,,a)
b = (b b,,b,)

= and scalar, s

Then vector addition:

a+b=(a +ba, +b,,a,+h,)

= Scaling vector by a
scalar

as=(as,8,s,a,9)

>

2.5a

Note vector subtraction:

a-b
=(a, +(-b),a,+(-b,),a; +(- b))

a-b
p
b

= Magnitude of a

= Normalizing a vector (unit vector)

. _a _ vector
a= = :
| magnitude

= Note magnitude of normalized vector = 1. i.e

cl ass Vector {

publ i c:

<VVect or Public Methods>
float x, vy, z;

(no need to use selector and mutator)

Dot(v, u) v = |Vl cosg
AbsDot(v, u)
Cross(v, u)

v u=[Mlulsing

(v, u, vxu) form a
coordinate system

x — Yy¥z ~ y
(V u)y = VU, - ,U,

PBRT vector methods
= Lengt h(v)- returns length of vector, v
» Lengt hSquar ed(v) — (returns length of v)2

= Normalize(v) returns a vector, does not normalize in place

Construct a local coordinate system from a
vector.

I nl i ne voi d Coordi nat eSyst em(const Vector &vli,
Vector *v2, Vector *v3)

=\/1 normalized already.

=Construct v2: perpendicular vector of v1 by
= Zero out 1 component of vl
= Swap other 2 components

=\/1 x v2 = v3: 3" vector

Points are different from vectors
explicit Vector(const Point &p),;

You have to convert a point to a vector explicitly (no
accidents, know what you are doing).

X

Vect or v=p;

Vect or v=Vector(p);

Vector v, Point p, g, r; float a;

q
q=p+v; /'.
g=p- V; i
V=Q- p; //

/
'=p :
a*p; p/a; p'/

(This is only for the operationa p+3 q.)

PBRT supports:
D st ance(p, Q) ;

Di st anceSquared(p, q);

= A surface normal (or just normal) Is a vector
that is perpendicular to a surface at a
particular position.

Different than vectors sometimes
Particularly when applying transformations.

Implementation similar to Vect or , except

= Normal cannot be added to a point
= Cannot take the cross product of two normals.

Nor mal is not necessarily normalized.

Conversion between Vect or and Nor mal
must be explicit

cl ass Ray {

publ i c:
<Ray Public Methods>
Poi nt o;

(They may be changed even if Ray is const .)
Vector d;

mut abl e| fl oat mnt, naxt:
fl oat |tine

™ Initialized as RAY _EPSI LON to

b (for motion blur) avoid self intersection.
Ray r(o, d);
Point p=r(t);

maxt

r(t)=o+td OELtE¥

= Used to estimate projected area for a small part of a
scene

= Used for texture antialiasing.
class RayDifferential : public Ray {

publ I c:
<RayD fferential Methods>
bool hasD fferentials;

Ray rx, ry;

'

= Avoid intersection tests inside a volume if ray doesn'’t
hit bounding volume.

= Benefits depends on:
» Expense of testing volume vs objects inside
* Tightness of the bounding volume.

» Popular bounding volumes: sphere, axis-aligned
bounding box (AABB), oriented bounding box (OBB).

V4

cl ass BBox {

publ i c:
<BBox Public Met hods>
Poi nt pM n, pMax;

Point p,q; BBox b; float delta;
BBox(p, q) /[l no order for p,

BBox::pMax

v

L

BBox::pMin

g

Uni on(b, p) — Given point & Bbox, return new larger bounding box

containing point (bbox) and Bbox.
4_,4_

Ai on(b, b2)

Poi nt p, q; BBox Db;

b. Expand(del ta): Expand old bounding box by factor delta

Vi

4

pMin - delta

pMax + delta

Poi nt p,qg; BBox Db;

= pb. Overl aps(b2): do two bounding boxes overlap
each other in x,y,z

= Returns boolean. True (overlaps) or false (does not

overlap)

/

b

L b2

Poi nt p,qg; BBox Db;

* pb.Inside(p): Ispointp inside bounding box?
Returns boolean (true or false)

= Vol une(b): Returns volume of bounding volume
xX*y™*2)

pMax

V4

L

pMin

Poi nt p,qg; BBox Db;

b. Maxi muntxt ent () (which bounding box axis is the
longest; useful for building kd-tree)

b. Boundi ngSphere(c, r) (returns center and
radius of bounding sphere)

= Example: generate random ray which intersects scene
geometry

pMax

V4

pMin

cl ass Transform {

private:
Ref erencekMat ri x4x4> m i nv;

ave space, but can’t be modified after construction

= Transform stores element of 4x4 matrix

= Also computes and stores matrix inverse, minv
(avoid repeatedly computing inverse)

= Transl at e(Vect or (dx, dy, dz))
= Scal e(sx, sy, sz)
* Rot ateX(a)
(?;éL 0 0O dxo a o0 0 00
0 1 0 dy- : -sng 0=
T(dx,dy,dz):g N R(q):(?o cosq - SNy O;
0 01 dz% 0 sng cosg 0
éo 0 0 1 éo 0 0 1g
@ 0 0 0 R@)*=R@)
_(;O Sy O O-=
(SX’Sy’SZ)_(;O 0 sy 0: Question: How does x-roll
4 matrix above differ based
gO 00 1g on axes handedness?

= Rotate(a, Vector(1,1,1))

= Rotate(a, Vector(1,1,1))

p =a(v>a)

Vi=V-Dp

V, =V, a ‘VZ‘ :‘Vl‘

V'=p+v,cosq+V,sing

= Caller specifies:

= camera (eye position),

* Look at point
= Up vector

= Want to compute 4x4 transform matrix that
converts from world space to eye space

A
Y p

world

AVl

= LookAt (Poi nt &pos, Point | ook, Vector
&up)

up

¥ | ook
dir -~
7~
//

Vector dir=Normalize(l ook-pos);
Vector right=Cross(dir, Normalize(up));
DOS Vect or newUp=Cross(right,dir);

posS
[IIII\
O 0 O 1

\ J

= Point:qg=T(p), T(p,&q) \F;gi:rl‘gr_(%llé)

use homogeneous coordinates implicitly
= Vector:u=T(v), T(u, &v)
= Nor mal : treated differently than vectors
because of anisotropic transformations

nx=n't=0

(n)'t'=0
(Sn)"Mt =0
n'S'Mt=0

Tr ansf or mshould keep its inverse g™\ =|
For orthonormal matrix, S=M S=M""

Transf or m Bbox?
= transform its 8 corners and expand to include all 8 points.

» Differenti al Geonet ry: a self-contained
representation for a particular point on a surface so
that all the other operations in pbrt can be executed
without referring to the original shape. Contains

= Position

= Surface normal

= Parameterization

= Parametric derivatives
= Derivatives of normals
= Pointer to shape

Ray-Surface Intersection

Ray: t

OFEt<¥ O P N
Plane: 3
(P-P§-N=0 P¢

ax+by+cz+d=0

Solve for intersection

Substitute ray equation into plane
equation 5. pg. N = (O+tD- P§- N =0
(O- P9-N
N

N =

t=-

Wl

= A sphere of radius r at the origin

= Implicit: x2+y?+z2-r2=0

= Parametric: f(? ,?)
X=rsin? cos?
y=rsin? sin?
Z=I' COS?

Perform in object space, Wwrl dToQbj ect (r, &ray)
Assume that ray is normalized for a while

X2+y2+22 :rZ
(0, +1d,)" + (o, +td, f +(o, +td,)" =1

At°+Bt+C =0

tep 1
"A=d2+d? +0?

B=2(d,0, +d,0

C=o0;+0;+0;- I’

y 70,0,)

e B- VB?- 4AC - B++/B?- 4AC
° 2A ' 2A

Step 2
If (B>-4AC<O0) then the ray misses the sphere. B>-4AC=0?

Step 3
Calculate t, and test if t;<<O

Step 4
Calculate t; and test if ;<0 /C) /@ /@

f =uf__ Cmax
X = cosf
y =rsinf
2= Zpin YV(Z = Ziin)

min

*First consider sides
=l ater consider cap/base

= Implicit equation for cylinder

= Substituting In ray equation

= Glving

x2+y2— r2=0

(o, +td) +(oy +tdy)2 =2
At°+Bt+C =0
A=d;+d;

B=2(d,0, +d,0,)

C=0;+0-r° Solve for t

= Pat Hanrahan, CS 348B, Spring 2005 class slides

* Yung-Yu Chuang, Image Synthesis, class slides,
National Taiwan University, Fall 2005

= Kutulakos K, CSC 2530H: Visual Modeling, course
slides

= UIUC CS 319, Advanced Computer Graphics Course
slides

