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1 The Need for Explicit Polymorphism

In our previous lecture, we looked at examples like the length procedure (from now on, we’ll switch to Scheme with
imaginary type annotations):

(define lengthl
(lambda (I : numlist) : number
(cond
[(humEmpty? 1) 0]
[(humCons? I) (add1 (Ilengthl (numRest 1)))])))

If we invoke lengthl on (list 1 2 3), we would get 3 as the response.

Now suppose we apply lengthl to (list "a ’b ’c). What do we expect as a response? We might expect it to evaluate
to 3, but that’s not what we’re going to get! Instead, we are going to get a type error (before invocation can even
happen), because we are applying a procedure expecting a numlist to a value of type symlist (a list of symbols).

This should be easy: we just need to define another procedure for computing the length of lists of symbols:

(define length2
(lambda (I : symlist) : number
(cond
[(symEmpty? 1) O]
[(symCons? I) (add1 (length2 (symRest )))])))

Invoking length2 on (list ’a ’b ’c) will indeed return 3. But look closely at the difference between lengthl and length2:
what changed in the code? Very little. The changes are almost all in the type annotations, not in the code that executes.
This is not really surprising, because there is only one length procedure in Scheme, and it operates on all lists, no
matter what values they might hold.

This looks pretty bad. We’ve introduced types to reduce the number of errors in our program (and for other
reasons we’ve discussed, such as documentation), but in the process we’ve actually made it more difficult to write
some programs. This is a constant tension in the design of typed programming languages. Introducing new type
mechanisms proscribes certain programs, but in return it invalidates some reasonable programs, making them harder
to write. The length example is a case in point.

Clearly computing the length of a list is very useful, so we might be tempted to somehow add length as a primitive
in the language, and devise special type rules for it so that the type checker doesn’t mind what kind of list is in use.
This is a bad idea! There’s a principle of language design that says it’s generally unadvisable for language designers
to retain special rights for themselves that they deny programmers who use their language. It’s unadvisable because
its condescending and paternalistic. It suggests the language designer somehow “knows better” than the programmer:
trust us, we’ll build you just the primitives you need. In fact, programmers tend to always exceed the creative bounds
of the language designer. We can already see this in this simple example: Why length and not reverse? Why length
and reverse but not append? Why all three and not map? Or filter or foldl and foldr or .... Nor is this restricted to
lists: what about trees, graphs, and so forth? In short, special cases are a bad idea. Let’s try to do this right.

To do this right, we fall back on an old idea: abstraction. The two length functions are nearly the same except
for small differences; that means we should be able to parameterize over the differences, define a procedure once, and
instantiate the abstraction twice or more times, as necessary. Let’s do this one step at a time.

11t had better: if it didn’t prevent some programs, it wouldn’t catch errors!



Before we can abstract, we should identify the differences clearly. Here they are, boxed:

(define Iength
(lambda (I : [num Jist) : number

(cond
[(numEmpty?1) 0]
[(num |Cons? I (add1 (Iength (num Rest ))1))

(define Iength
(lambda (I : Iist) : number

(cond
[Empty? ) 0]
[(sym]Cons? 1) (add1 (length 2] (Rest DY)

Clearly, we want to end up with a single length procedure, so we’ll drop the numbers at the end of the two names.
We’ll also abstract over the num and sym by using the parameter 7, which will stand (of course) for a type:

(define length
(lambda (I : [ Jiist) : number
(cond
[(7 [Empty?1) 0]
[(7]Cons? 1) (add1 (length ([ [Rest I)))1)))

It’s cleaner to think of list as a type constructor, analogous to how variants define value constructors: that is, list
is a constructor in the type language whose argument is a type. We’ll use an applicative notation for constructors
in keeping with the convention in type theory. This avoids the odd “concatenation” style of writing types that our
abstraction process has foisted upon us. This change yields

(define length
(lambda (I : list(7)) : number
(cond
[(7 [Empty? 1) O]
[(7[Cons? 1) (add1 (length ([ 7 [Rest I)))1)))

At this point, we’re still using concatenation for the list operators; it seems to make more sense to make those also
parameters to Empty and Cons. To keep the syntax less cluttered, we’ll write the type argument as a subscript:

(define length
(lambda (1 : list(7)) : number
(cond
[(Empty?; 1) O]
[(Cons?.- 1) (add1 (length (Rest. D)])))

The resulting procedure declaration says that length consumes a list of any type, and returns a single number. For a
given type of list, length uses the type-specific empty and non-empty list predicates and rest-of-the-list selector.

All this syntactic manipulation is hiding a great flaw, which is that we haven’t actually defined 7 anywhere! As
of now, 7 is just a free (type) variable. Without binding it to specific types, we have no way of actually providing
different (type) values for — and thereby instantiating different typed versions of length.

Usually, we have a simple procedure for eliminating unbound identifiers, which is to bind them using a procedure.
This would suggest that we define length as follows:

(define length
(lambda (7)
(lambda (I : list(7)) : number
(cond
[(Empty?; 1) O]
[(Cons?. 1) (add1 (length (Rest, D)D)



but this is horribly flawed! To wit:

1. There is no annotation on length. We cannot simply use the annotation we had before, because it refers to the
unbound 7.

2. The procedure length now has the wrong form: instead of consuming a list as an argument, it consumes a value
that it will bind to 7, returning a procedure that consumes a list as an argument.

3. The programisn’t even syntactically valid: there is no designation of argument and return type for the procedure
that binds 712

4. The procedure bound to length expects one argument which is a type. It seems to violate our separation of
the static and dynamic aspects of the program to have types be present (to pass as arguments) during program
evaluation!

So on the one hand, this seems like the right sort of idea—to introduce an abstraction—but on the other hand, we
clearly can’t do it the way we did above. We’ll have to be smarter.

The last complaint above is actually the most significant, both because it is the most insurmountable and because
it points the way to a resolution. There’s a contradiction here: we want to have a type parameter, but we can’t have
the type be a value. So how about we create procedures, which can bind arguments, to arguments that are types? And
what if we execute these special type procedures during type checking, not during execution?

As always, name and conquer. We don’t want to use lambda for these type procedures, because lambda already
has a well-defined meaning: it creates procedures that evaluate during execution. Instead, we’ll introduce a notion of
a type-checking-time procedure, denoted by A. A A procedure takes only types as arguments, and its arguments do
not have further type annotations. We’ll use angles rather than parentheses to denote their body. Thus, we might write
the length function as follows:

(define length
(A(7)
(lambda (1 : list(7)) : number
(cond
[(Empty?; 1) O]
[(Cons?, 1) (add1 (length (Rest. D))

This is a lot better than the previous code fragment, but it’s still not quite there. The definition of length binds it to
a type procedure of one argument, which evaluates to a run-time procedure that consumes a list. Yet length is applied
in its own body to a list, not to a type.

To remedy this, we’ll need to apply the type procedure to an argument (type). We’ll again use the angle notation
to denote application:

(define length
(A(7)
(lambda (1 : list(7)) : number
(cond
[(Empty?; 1) O]
[(Cons?, 1) (addl (length{7) (Rest D))]))))

If we’re going to apply length to 7, we might as well assume Empty?, Cons? and Rest are also type-procedures, and
supply 7 explicitly through type application rather than through the clandestine, undefined subscript currently in use:

(define length
(A (1)
(lambda (1 : list(7)) : number
(cond
[(Empty?(r) 1) O]
[(Cons?(7) I) (addl (length{r) (Rest{(7) D)])))

2You might wonder why we don't create a new type, call it type, and use this as the type of the type arguments. Thisistrickier than it seems: is
type aso atype?




Thus, an expression like (Rest{r) 1) first applies Rest to 7, resulting in an actual rest procedure that applies to lists of
values of type 7; this procedure consumes [ as an argument and proceeds as it would in the type-system-free case. In
other words, every type-parameterized procedure, such as Rest or length, is a generator of infinitely many procedures
that each operate on specific types. The use of the procedure becomes

(length{num} (list 1 2 3))
(length(sym) (list ’a b ’c))

We call this language explicitly polymorphic. The term polymorphism means “having many forms”; in this case,
each of our type-parameterized procedures is really a representative of an infinite number of related functions. The
“explicitly” comes from the fact that our language forces the programmer to write the A’s and type application. The
term “polymorphism” has two or three different meanings in programming languages, each arising from a distinct
community. For now, it suffices to note that the meaning we’re using in today’s notes is different from the traditional
meaning in object-oriented programming.

The Type Language

As aresult of these ideas, our type language has grown considerably richer. In particular, we now permit type variables
as part of the type language. These type variables are introduced by type procedures (A), and discharged by type
applications. How shall we write such types? We may be tempted to write

length : type — (list(type) — number)

but this has two problems: first, it doesn’t distinguish between the two kinds of arrows (“type arrows” and “value
arrows”, corresponding to A and lambda, respectively), and secondly, it doesn’t really make clear which type is
which. Instead, we adopt the following notation:

length : Va. list(a) — number

where it’s understood that every V parameter is introduced by a type procedure (A).3 Here are the types for a few other
well-known polymaorphic functions:

filter : Va. list(a) x (e — boolean) — list(«)
map : Va, S. list(a) x (a — £) — list(3)

The type of map, in particular, makes clear why hacks like our initial proposal for the type of length don’t scale: when
multiple types are involved, we must give each one a hame to distinguish between them.

2 Evaluation Semantics and Efficiency

While we have introduced a convenient notation, we haven’t entirely clarified its meaning. In particular, it appears
that every type function application actually happens during program execution. This seems extremely undesirable for
two reasons:

e it’ll slow down the program, in comparison to both the typed but non-polymorphic programs (that we wrote at
the beginning of today’s notes) and the non-statically-typed version, which is what Scheme provides;

e it means the types must exist as values at run-time.

Attractive as it may seem to students who see this for the first time, we really do not want to permit types to be
ordinary values. A type is an abstraction of a value; conceptually, therefore, it does not make any sense for the two
to live in the same universe. Secondly, if the types were not supplied until execution, the type checker would not be
separable from the evaluator. Third, and worst of all, the type checker would not be able to detect errors until program
execution time, thereby defeating most of the point of using types!

It is therefore clear that the type procedures must accept arguments and evaluate their bodies before the type
checker even begins execution. By that time, if all the type applications are over, it suffices to use the type checker

3It's conventional to use o, B and so on as the canonical names of polymorphic types. This has two reasons. First, we conventionaly use 7 to
stand for a type, whereas here e and 3 are types themselves. Second, not many people know what Greek letter comes after 7 ...



built for last class, since what remains is a monomorphically typed universe. We call the phase that performs these
type applications the type expander.

The problem with any static procedure applications is to ensure they will lead to terminating processes! If they
don’t, we can’t even begin the next phase, which is traditional type checking. In the case of using length, the first
application (from the procedure use) is on the type num. This in turn inspires a recursive invocation of length also
on type num. Because this latter procedure application is no different from the initial invocation, the type expander
does not need to perform the application. (Remember, if the language has no side-effects, computations will return
the same result every time.) Therefore, if applying length to type num does not yield any errors the first time, it won’t
on subsequent invocations also.

This informal argument suggests that only one pass over the body is necessary. Actually, this suffices only if the
argument does not change on subsequent invocations. If, instead, the body of length were

(define length
(A(7)
(lambda (1 : list(7)) : number
(cond
[(Empty?(r) 1) O]
[(Cons?(7) I) (add1 (length(list(7)) (Rest(r) D)])))

then the (type) argument to length keeps growing in size and the type expander becomes unable to cry halt (since
it never sees a type procedure application that it has seen before). The question is, are such programs meaningful?
Should they even be allowed to get past the type expander? And if so, how do we modify its algorithm?

Finally, the type expander conceptually creates many monomorphically typed procedures, but we don’t really want
most of them during execution. Having checked types, it’s fine if the length function that actually runs is essentially
the same as Scheme’s length. This is in fact what most evaluators do. The static type system ensures that the program
does not make unauthorized type violations, so the program is run procedures that don’t perform type checks.

3 Perspective

Explicit polymorphism seems extremely unwieldy: why would anyone want to program with it? There are two possible
reasons. The first is that it’s the only mechanism that the language designer gives for introducing parameterized types,
which aid in code reuse. The second is that the language includes some additional machinery so you don’t have to write
all the types every time. In fact, C++ introduces a little of both (though much more of the former), so programmers
are, in effect, manually programming with explicit polymorphism virtually every time they use the sTL (Standard
Template Library). But as we’ll see in the next class, we can do better than deal with all this written overhead.



