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1 Writing a Recursive Function

Can we write the factorial function in AFunExp? Well, we currently don’t have multiplication, or a way of making
choices in our AFunExp code. But those two are easy to address. Multiplication is really very similar to addition and
subtraction; to make choices, let’s add a simple construct called if0 with the following BNF:

<AFunIfExp> ::= ... all the terms in <AFunExp>, using <AFunIfExp> instead ...
| {* <AFunIfExp> <AFunIfExp>}
| {if0 <AFunIfExp> <AFunIfExp> <AFunIfExp>}

where AFunIfExp names a language with conditionals in addition to the features we have already studied. An if0
evaluates its first sub-expression. If this yields the value 0 it evaluates the second, otherwise it evaluates the third. For
example,

{if0 {+ 5 -5}
1
2}

evaluates to 1.
Given AFunIfExp, we’re ready to write factorial:

{let {fac {fun {n}
{if0 n

1
{* n {fac {+ n -1}}}}}}

{fac 5}}

What does this evaluate to? 120? No. Consider the following simpler expression, which you were asked to think about
as a puzzle when we studied substitution:

{let {x x} x}

In this program, the x in the named expression position of the let has no binding. Similarly, the environment of the
function bound to fac above has no bound identifiers. Therefore, only the environment of the first invocation (the
body of the let) has a binding for fac. When fac is applied to 5, the interpreter evaluates the body of fac in the
closure environment, which has no bound identifiers, so interpretation stops on the intended recursive call to fac with
an unbound identifier error.

Before you continue reading, please pause for a moment, study the program carefully, write down the environments
at each stage, step by hand through the interpreter, even run the program if you wish, to convince yourself that this
error will occur. Understanding the error thoroughly will be essential to following the remainder of these notes.

2 A Recursion Construct

It’s clear that the problem arises with the scope of let: it makes the new binding available only in its body. In
contrast, we need a construct that will make the new binding available to the named expression also. Different intents,
so different names: Rather than change let, let’s add a new construct to our language, rec.
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<AFunRecExp> ::= ... all the terms in <AFunIfExp>, using <AFunRecExp> instead ...
| {rec {<id> <AFunRecExp>} <AFunRecExp}

AFunRecExp is AFunIfExp extended with a construct for recursive binding. We can use rec to write a description of
factorial as follows:

{rec {fac {fun {n}
{if0 n

1
{* n {fac {+ n -1}}}}}}

{fac 5}}

Simply defining a new bit of syntax isn’t enough; we must also describe what it means. Indeed, notice that
syntactically, nothing about rec seems to inherently demarcate it as a generator of recursive bindings, since it has the
exact same “shape” as let. The interesting work lies in the interpreter. But before we get there, we’ll first need to
think hard about the semantics at a more abstract level.

3 Environments for Recursion

It’s clear from the analysis of our failed attempt at writing fac above that the problem has something to do with the
environments. Let’s try to make this intuition more precise.

We can refer to constructs such as let as environment transformers. That is, they are functions that consume an
environment and transform it into one for each of their sub-expressions. We will call the environment they consume—
which is the one active outside the use of the construct—the ambient environment.

There are two transformers associated with let: one for its named expression, and the other for its body. Let’s
write them both explicitly.
��������� 	�

����� (e) � e

That is, whatever the ambient environment for a let, that’s the environment used for the named expression. In
contrast,
�������������
�
� (e) � (new-sub bound-id

bound-value
e)

where bound-id and bound-value have to be replaced with the corresponding identifier name and value, respectively.
Now let’s try to construct the intended transformers for rec in the factorial definition above. Since rec has two

sub-expressions, just like let, we will need to describe two transformers. The body seems easier to tackle, so let’s
try it first. At first blush, we might assume that the body transformer is the same as it was for let, so:
��� �
�������
�
� (e) � (new-sub ’fac

(funV ����� )
e)

Actually, we should be a bit more specific than that: we must specify the environment contained in the closure. Once
again, if we had a let instead of a rec, the closure would close over the ambient environment:
��� �
�������
�
� (e) � (new-sub ’fac

(funV ’n
(if0 ����� ) ;; body
e)

e)

But this is no good! When the fac procedure is invoked, the interpreter is going to evaluate its body in the environment
bound to e, which doesn’t have a binding for fac. So this environment is only good for the first invocation of fac; it
leads to an error on subsequent invocations.

Let’s consider how this closure came to have that environment. The closure simply closes over whatever environ-
ment was active at the point of the procedure’s definition. Therefore, the real problem is making sure we have the right
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environment for the named-expression portion of the rec. If we can do that, then the procedure in that position would
close over the right environment, and everything would be set up right when we get to the body.

Let’s therefore shift our attention to the environment transformer for the named expression. If we evaluate an
invocation of fac in the ambient environment, it fails immediately because fac isn’t bound. If we evaluate it in
(new-sub ’fac (funV ����� e) e), we can perform one function application before we halt with an error. What if we
wanted to be able to perform two function calls (i.e., one to initiate the computation, and one recursive call)? Then the
following environment would suffice:
�������
	 �
������� (e) �

(new-sub ’fac
(funV ’n

(if0 ����� ) ;; body
(new-sub ’fac

(funV ’n
(if0 ����� ) ;; body
e)

e))
e)

That is, when the body of fac begins to evaluate, it does so in the environment

(new-sub ’fac
(funV ’n

(if0 ����� ) ;; body
e)

e)

which contains the “seeds” for one more invocation of fac. That second invocation, however, evaluates its body in
the environment bound to e, which has no bindings for fac, so any further invocations would halt with an error.

Let’s try this one more time: the following environment will suffice for three recursive invocations of fac:
� �����
	 �
������� (e) �

(new-sub ’fac
(funV ’n

(if0 ����� ) ;; body
(new-sub ’fac

(funV ’n
(if0 ����� ) ;; body
(new-sub ’fac

(funV ’n
(if0 ����� ) ;; body
e)

e))
e))

e)

There’s a pattern forming here. To get true recursion, we need to not “bottom out”, which happens when we run out of
extended environments. This would not happen if the “bottom-most” environment were somehow to refer back to the
one enclosing it. If it could do so, we wouldn’t even need to go to three levels; we only need one level of environment
extension. That is, the place of the boxed e in
�������
	 �
������� (e) �

(new-sub ’fac
(funV ’n

(if0 ����� ) ;; body
e )

e)
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should instead be a reference to the entire right-hand side of that definition. That is, the environment must be a cyclic
data structure, or one that refers back to itself.

We don’t seem to have an easy way to represent this environment transformer, because we can’t formally just draw
an arrow from the box to the right-hand side. However, in such cases we can use a variable to name the box’s location,
and specify the constraint externally (that is, once again, name and conquer). Concretely, we can write
��������� �
	��
��� (e) �

(new-sub ’fac
(funV ’n

(if0 ����� ) ;; body�
)

e)

But this has introduced an unbound (free) identifier, E. There is an easy way of making sure it’s bound:
� ������� �
	��
��� (e) �� �

.
(new-sub ’fac

(funV ’n
(if0 ����� ) ;; body�

)
e)

We’ll call this a pre-transformer, because it consumes both e, the ambient environment, and
�

, the environment to put
in the closure. For some ambient environment ��� , let’s set

����� � ��������� ��	��
���� � ��!
Remember that

� � �
is a procedure ready to consume an

�
, the environment to put in the closure. What does it return?

It returns an environment that extends the ambient environment. If we feed the right environment for
�

, then recursion
can proceed forever. What

�
will enable this?

Whatever we get by feeding some
� � to

� � �
—that is,

� � �  � � ! —is precisely the environment that will be bound
in the closure in the named expression of the rec, by definition of

� � �
. But the environment we get back will be the

same environment: one that extends the ambient environment with a suitable binding for fac (because the form of� � �
is (new-sub ’fac ����� )). In short, � � �����  � !

That is, the environment
�

we need to feed
�"���

needs to be the same as the environment we will get from applying�����
to it. This looks pretty tricky: we’re being asked to pass in the very environment we want to get back out! Strange

as it may seem, it’s not an unreasonable request. We call such a value a fixed-point of a function. In this particular
case, the fixed-point is an environment that extends the ambient environment with a binding of a name to a closure
whose environment is . . . itself. That is, the solution is a cyclic environment.

Aside: Recursiveness and Cyclicity

It’s important to distinguish between recursive and cyclic data. A recursive object contains references to instances of
objects of the same type as it. A cyclic object is a special case of a recursive object. A cyclic object contains references
not only to objects of the same kind as itself, it contains an actual reference to itself.

To easily recall the distinction, think of a typical family tree as a canonical recursive structure. Each person in the
tree refers to two more family trees, one each representing the lineage of their mother and father. However, nobody
is their own parent, so a family tree is never cyclic. Therefore, structural recursion over a family tree will always
terminate. In contrast, the Web is not merely recursive, it’s cyclic: a Web page can refer to another page which can
refer back to the first one (or, a page can refer to itself). Naı̈ve recursion over a cyclic datum will potentially not
terminate: the recursor needs to either not try traversing the entire object, or must track which nodes it has already
visited and accordingly prune its traversal. Web search engines face the challenge of doing this efficiently.
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Aside: Fixed-Points

You’ve already seen fixed points in mathematics. For example, consider functions over the real numbers. The function���������
	
has exactly one fixed point, because

���������
�
only when

����	
. But not all functions over the reals have

fixed points: consider
���������������

. A function can have two fixed points:
����������� �

has fixed points at
	

and
�

(but
not, say, at � � ). And because a fixed point occurs whenever the graph of the function intersects the line � ��� , the
function

���������
�
has infinitely many fixed points. The study of fixed points over topological spaces is fascinating,

and yields many rich and surprising theorems.1

4 A Hazard

When programming with rec, we have to be extremely careful to avoid using values before their time. Specifically,
consider this program:

{rec {f f}
f}

What should this evaluate to? The f in the body has whatever value the f did in the named expression of the rec—
whose value is unclear, because we’re in the midst of a recursive definition. What you get really depends on the
implementation strategy. An implementation could give you some sort of strange, internal value. It could even result
in an infinite loop, as f tries to look up the definition of f, which depends on the definition of f, which . . .

There is a safe way out of this pickle. The problem arises because the named expression can be any complex
expression, including the identifier we are trying to bind. But recall that we went to all this trouble to create recursive
procedures. If we merely wanted to bind, say, a number, we have no need to write

{rec {n 5}
{+ n 10}}

when we could write

{let {n 5}
{+ n 10}}

just as well instead. Therefore, instead of the liberal syntax

<AFunRecExp> ::= ... all the terms in <AFunIfExp>, using <AFunRecExp> instead ...
| {rec {<id> <AFunRecExp>} <AFunRecExp}

we could use the more conservative syntax

<AFunRecExp> ::= ... all the terms in <AFunIfExp>, using <AFunRecExp> instead ...
| {rec {<id> <proc>} <AFunRecExp}

That is, we demand that the named expression syntactically be a procedure. Then, interpretation of the named expres-
sion immediately constructs a closure, and the closure can’t be applied until we interpret the body—by which time the
environment is in a stable state.

Puzzles

1. Are there any other expressions we can allow, beyond syntactic procedures, that would not compromise the
safety of this conservative recursion regime?

2. Can you write a reasonable program that is permitted in the liberal syntax, and that safely evaluates to a legiti-
mate value, that the conservative syntax prevents?

1One of these is the Brouwer fixed point theorem. The theorem says that every continuous function from the unit � -ball to itself must have a
fixed point. A famous consequence of this theorem is the following result. Take two instances of the same map, align them, and lay them flat on a
table. Now crumple the upper copy, and lay it atop the smooth map any way you like (but entirely fitting within it). No matter how you place it, at
least one point of the crumpled map lies directly above its equivalent point on the smooth map!
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5 Implementing Recursion

We have now reduced the problem of creating recursive functions to that of creating cyclic environments.
The interpreter’s rule for let looks like this:

[with (bound-id named-expr bound-body)
(interp bound-body

(new-sub bound-id
(interp named-expr env)
env))]

It is tempting to write something similar for rec, perhaps making a concession for the recursive environment as
follows:

[rec (bound-id named-expr bound-body)
(interp bound-body

(aRecSub bound-id
(interp named-expr env)
env))]

This is, however, unlikely to work correctly. The problem is that it interprets the named expression in the environment
env. We know that the named expression must syntactically be a fun (the parser, presumably, enforces this), which
means its value is going to be a closure. That closure is going to capture its environment, which in this case will be
env, the ambient environment. But env doesn’t have a binding for the identifier being bound by the rec expression,
which means the function won’t be recursive. So this does us no good at all.

Rather than hasten to evaluate the named expression, we could pass the pieces of the function to the procedure
that will create the recursive environment. When it creates the recursive environment, it can generate a closure for the
named expression that closes over this recursive environment. In code,

[rec (bound-id named-expr bound-body)
(cases AFunRecExp named-expr

[fun (fun-param fun-body)
(interp bound-body

(aRecSub bound-id
fun-param
fun-body
env))]

[else (error ’rec "expecting a syntactic procedure")])]

This puts the onus on aRecSub (the remaining procedures, such as new-sub and lookup, can remain the same as
they were before). We encourage you to ponder this problem; we will examine concrete solutions in our next class.
Recall that we have two different representations of environments: as datatypes and as procedures.
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