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We’ve seen that there are (at least) two, fairly distinct ways of representing environments. To implement recursive
environments, we need to provide an implementation for each representation. In both cases, we’re trying to provide
an implementation for the procedure with this type.

;; aRecSub: symbol symbol AFunRecExp env � env

1 Procedural Representation of Recursive Environments

Assume that we’re using Scheme procedures to represent environments. Let’s construct this stepwise.
Clearly, aRecSub must begin as follows:

(define (aRecSub bound-name fun-param fun-body env)
����� )

We know that somewhere, the following code pattern must reside by nature of the procedural representation of envi-
ronments:

(define (aRecSub bound-name fun-param fun-body env)
...
(lambda (want-name)

(cond
[(symbol � ? want-name bound-name)
����� ]

[else (lookup want-name env)]))
����� )

If the symbols match, what do we want to return? Looking up identifiers in environments produces values. Recall that
the named expression must be a function, so its value must be a closure. Thus, the response if the symbols match must
yield a closure:

(define (aRecSub bound-name fun-param fun-body env)
...
(lambda (want-name)

(cond
[(symbol � ? want-name bound-name)
(funV fun-param fun-body ����� )]

[else (lookup want-name env)]))
����� )

What’s not yet clear is what environment to close over. It clearly can’t be env (defeats the purpose of rec), and it must
be something with this additional binding. So how about we give a name to this new environment that knows about
the binding for bound-name?

(define (aRecSub bound-name fun-param fun-body env)
(local ([define rec-ext-env

(lambda (want-name)
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(cond
[(symbol � ? want-name bound-name)
(funV fun-param fun-body ����� )]

[else (lookup want-name env)]))])
����� ))

Having named it, it’s now easy to fill in the two ellipses. What environment do we want to close over in the closure?
One that has a binding for the function named in bound-name. This is the environment rec-ext-env. What do we want
to return from this procedure? The recursively extended environment. This is also rec-ext-env. Thus, ignoring the box
momentarily,

(define (aRecSub bound-name fun-param fun-body env)
(local ([define rec-ext-env

(lambda (want-name)
(cond

[(symbol � ? want-name bound-name)
(funV fun-param fun-body rec-ext-env )]

[else (lookup want-name env)]))])
rec-ext-env))

This definition raises two natural questions:

1. Is this really a recursive environment? Yes it is, though you’ll just have to take the word of the authors of
DrScheme that local does indeed define rec-ext-env as a recursive procedure, so references to that name in the
procedure’s body will indeed refer back to the same procedure.

2. Doesn’t the boxed reference to rec-ext-env have the same problem we were trying to avoid with expressions such
as {rec {x x} x}? Actually, it doesn’t. The reference here is “under a lambda”, that is, it is separated from
the binding instance by a procedure declaration. Therefore, when the named expression portion of the local is
evaluated, it associates a closure with rec-ext-env that doesn’t get invoked until much later—by which time the
recursive environment of the local is safely defined.

Reassuring as these responses may be, there is still something deeply unsatisfying about this solution. We set out
to add recursive functions to AFunRecExp. We reduced this to the problem of defining recursive environments, which
is legitimate (and arguably, recursive environments are easier to think about than recursive functions themselves). But
we then implemented recursive environments by falling right back on Scheme’s recursive functions: an abuse of meta-
interpretive power, if ever there was any! What we’d like is a much more coherent, self-contained account of rec that
doesn’t rely on advanced knowledge of Scheme (or, at least, no knowledge of features that we don’t also find in more
mainstream programming languages).

Puzzle

[Note: This is a very difficult exercise!] Is it possible to implement recursive environments using the procedural
representation without employing Scheme’s constructs for creating recursive procedures? That is, can lambda alone
do the trick?

2 Datatype Representation of Recursive Environments

In this section, we will not only show how to implement recursion using the datatype representation of environments.
First, we have to extend our datatype representation to permit recursive environments:

(define-datatype DSub DSub?
[fresh-sub]
[new-sub (name symbol?)

(value AFunRecExp-value?)
(env DSub?)]

[aRecSub (name symbol?)
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(value (lambda (x)
(and (box? x)

(AFunRecExp-value? (unbox x)))))
(env DSub?)])

The type of value obviously needs to include AFunRecExp-value, but in fact we will need a little more than that.
Suggestively, we have chosen to call it a value box rather than just a value, and write the type declaration accordingly.1

We’ll be somewhat lazy in the interpreter, pushing all the work off onto a helper function. Thus,

(define (interp expr env)
(cases AFunRecExp expr

...
[rec (bound-id named-expr bound-body)

(cases AFunRecExp named-expr
[fun (fun-param fun-body)

(interp bound-body
(cyclically-bind-and-interp bound-id

named-expr
env))]

[else (error ’rec "expecting a syntactic function")])]
����� )

so the interesting work happens in cyclically-bind-and-interp.
Before we can create a cyclic environment, we must first extend it with the new variable. We don’t yet know what

it will be bound to, so we stick a dummy value into the environment:

;; cyclically-bind-and-interp : symbol AFunRecExp DSub � DSub

(define (cyclically-bind-and-interp bound-id named-expr env)
(local ([define value-holder (box (numV 1729))]

[define new-env (aRecSub bound-id value-holder env)])
����� ))

If the program uses the identifier being bound before it has its real value, it’ll get the dummy value as the result. But
because we have syntactically verified that the named expression is a function, this can’t happen.

Now that we have this extended environment, we can interpret the named expression in it:

(define (cyclically-bind-and-interp bound-id named-expr env)
(local ([define value-holder (box (numV 1729))]

[define new-env (aRecSub bound-id value-holder env)]
[define named-expr-val (interp named-expr new-env)])

����� ))

Because the named expression is a closure, it will close over the extended environment (new-env). Notice that this
environment is half-right and half-wrong: it has the right names bound, but the newest addition is bound to the wrong
(indeed, dummy) value.

Now comes the critical step. The value we get from evaluating the named expression is the same value we want
to get on all subsequent references to the name being bound. Therefore, the dummy value—the one bound to the
identifier named in the rec—needs to be replaced with the new value:

(define (cyclically-bind-and-interp bound-id named-expr env)
(local ([define value-holder (box (numV 1729))]

[define new-env (aRecSub bound-id value-holder env)]
[define named-expr-val (interp named-expr new-env)])

(set-box! value-holder named-expr-val)))

1A Scheme box is a mutable cell. Boxes have three operations: box : Value � box, which creates a fresh cell containing the argument value;
unbox : box � Value, which returns the value stored in a box; and set-box! : box Value � void, which changes the value held in a box.
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Since any closures in the value expression share the same binding, they automatically avail of this update. Finally, we
must remember that interp-and-cyclic-bind has to actually return the updated environment, for the interpreter to use
when evaluating the body:

(define (cyclically-bind-and-interp bound-id named-expr env)
(local ([define value-holder (box (numV 1729))]

[define new-env (aRecSub bound-id value-holder env)]
[define named-expr-val (interp named-expr new-env)])

(begin
(set-box! value-holder named-expr-val)
new-env)))

There’s one last thing we need to do. Because we have introduced a new kind of environment, we must update the
environment lookup procedure to recognize it.

(define (lookup name an-env)
(cases DSub an-env

...
[aRecSub (bound-name bound-value-box rest-env)

(if (symbol � ? bound-name name)
(unbox bound-value-box)
(lookup name rest-env))]))

That is, the rule for aRecSub is almost the same as that for aSub; we just need to remember that the actual value is
encapsulated within a box.

Puzzles

In the datatype implementation of environments:

1. Does anything in the rest of the code depend on the named expression being a syntactic function? Put differently,
can we remove the check for a syntactic function in the rec clause of the interpreter? Are there non-syntactic
expressions that can evaluate safely?

2. If we remove this check, what happens to programs that try to access the identifier being bound prematurely? Is
this behavior desirable and, if not, what changes would you make to improve it?
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