
Notes on Compilation
CS536, Fall 2003

Kathi Fisler, sk

October 27, 2003

We’ve seen that interpreters implement languages: if someone gives you the specification of a language, you can write
an interpreter to provide programming support for that language. The advantages of writing interpreters are that they
are generally easy to prototype (once you understand the language!) and can take advantage of all of the features in
the language you are writing the interpreter in. For example, you could write a Java compiler in Scheme usinglet/cc
to implement exceptions, even though Java doesn’t havelet/cc. The main downside to interpreters is that they can be
too slow on large programs. If execution speed becomes an issue for your language, it’s time to write a compiler.

A compiler is a program that transforms a program in one language to a program in another. This is a broad defintion;
it admits compilers from a language to (maybe a subset of) itself, for example. In this lecture, we want our compiled
programs to be written in a language with the constructs and expressive power of an assembly language. More specifi-
cally, our only control operators should be jumps, data should consist of only simple types (numbers and symbols, but
not lists), and we should expect to use stacks, memory addresses (pointers), and registers in our code.

Your first instinct might be to toss away your interpreter andstart writing your compiler from scratch. That wastes all
the effort that you put into developing and debugging your interpreter though! Finding a way toderiveyour compiler
code from your (working) interpreter code would be much lesserror prone. Fortunately, using CPS supports precisely
this activity!

This class uses a series of small programs to demonstrate howwe can compile programs starting from CPS. We’ll
compile tonight’s programs by hand to build your intuition on how this process works. You could implement the
techniques that we will perform manually in this lecture to compile programs. You could produce a compiler by
implementing the techniques we discuss here. While we won’tget all the way to actual assembly code tonight, we’ll
get to a form of programs that highly resembles assembly code; the final transformation to actual assembly would be
reasonably straightforward.

Bogus Terminology Warning: You’ll often hear people say “Language X is aninterpretedlanguage”. That ter-
minology is meaningless because nothing in thelanguage(the syntax or semantics) requires it to be interpreted or
compiled! Thecontextin which you use the language may favor interpretation or compilation, but that is a separate
issue. Keep these issues separate (or disavow that you took alanguages course!).1

Now, on with the show!
1It is technically possible to define a language that cannot becompiled, but this very rarely happens.

1

Example 1: Compiling Factorial

Consider the old favorite factorial program:

(define(fact n)
(if (zero? n)

1
(� n (fact (� n 1)))))

To create a compiled version of this program, we first convertit to CPS:

(define(fact/k n k)
(if (zero? n)

(k 1)
(fact/k(� n 1)

(lambda (val) (k (� n val))))))

This doesn’t look much like assembly code: it passes closures as arguments to maintain contexts (assembly languages
don’t have closures). The contexts resemble stacks though:we add pending computation to them (when we build
new contexts) and discharge pending computation when we getconcrete values. To see this, consider the following
program trace offact/k– notice how the pending multiplications build up “stack-like” in the context.

(fact/k3 (lambda (x) x))= (fact/k2 (lambda (val1)
((lambda (x) x)
(� 3 val1))))= (fact/k1 (lambda (val2)

((lambda (val1)
((lambda (x) x)
(� 3 val1)))

(� 2 val2))))= (fact/k0 (lambda (val3)
((lambda (val2)

((lambda (val1)
((lambda (x) x)
(� 3 val1)))

(� 2 val2)))
(� 1 val3))))= ((lambda (val3)

((lambda (val2)
((lambda (val1)

((lambda (x) x)
(� 3 val1)))

(� 2 val2)))
(� 1 val3)))

1)

Let’s make this stack explicit by rewriting our creation anduse of contexts using stack operator names.

(define(fact/stack n stack)
(if (zero? n)

(Pop stack1)
(fact/stack(� n 1)

2

(Push stack(lambda (val) (Pop stack(� n val)))))))

(define(Pop stack value)
(stack value))

(define(Push stack receiver)
(lambda (v) (receiver v))) ;; equivalent to just receiver

(define(EmptyStack value) value)

(define(fact n) (fact/stack n EmptyStack))

How did we transform the previous version into this one? We performed three steps:� renamed thek parameter tostack� replaced all calls tok with Pop stack� wrapped a (Push stack. . .) around all thelambda expressions passed as continuations

In the transformed code, our “stacks” are functions that popwhen we send them values; in other words, a stack is
a (lambda (v) . . .) Note that we haven’t changed how our program manages contexts yet. We’ve only introduced
abstract names for the operations we perform on contexts. Having introduced those names, though, we are now free
to change how we implement Push and Pop.

Throughout this lecture, our goal is to move lower and lower down the abstraction hierarchy. In other words, we
want to replace all high-level constructs with lower-levelones (this is what most compilers do). The currentfact code
uses lambdas in two ways: we represent the contexts (the stack contents) as lambdas, and we implement the stacks
themselves as lambdas. Lists are a lower-level, and more intuitive, data structure for implementing stacks. Let’s first
change our implementation of stacks. The stack will still hold lambdas, but Push and Pop will use list operations:

(define(fact/stack/list n stack)
(if (zero? n)

(Pop stack1)
(fact/stack/list(� n 1)

(Push stack(lambda (val) (Pop stack(� n val)))))))

(define(Pop stack value)
((first stack) value))

(define(Push stack receiver)
(cons receiver stack))

(defineEmptyStack(cons(lambda (value) value) empty))

(define(fact n) (fact/stack/list n EmptyStack))

With this version, we’d expect the stack forfact/stack/listwith input 3 to look like:

(list
(lambda (val3) (� val31))
(lambda (val2) (� val22))
(lambda (val1) (� val13))
(lambda (value) value))

3

Now the real fun begins! We need to develop a lower-level representation of the stackcontentsthan functions. What
do those functions do? Looking at the stack contents in the list above, once we get the final value (1), we run each
function and send the value to the previous lambda on the stack. So all that really matters are the numbers (given
those,fact just multiples them up the stack to get the final answer). So weshould be able to replace the functions with
records that hold the numbers. For example, if we introducedthe following datatype

(define-datatypestack-record StackRec?
[stack-rec-mult(n number?)])

we might expect our stack to have the contents:

(list
(stack-rec-mult1)
(stack-rec-mult2)
(stack-rec-mult3)
(lambda (value) value))

This eliminates most of thelambdas on the stack, but not the initial one that corresponds to finishing the computation
(the empty stack). We can eliminate thatlambda with another variant ofstack-recordthat holds no extra data.

(define-datatypestack-record StackRec?
[stack-rec-mult(n number?)]
[stack-rec-empty])

Now, we edit the rest of the code to use thestack-recorddatatype. Anywhere we used to push alambda onto the
stack, we now need to push the corresponding stack record instead.

(define(fact/stack/rec n stack)
(if (zero? n)

(Pop stack1)
(fact/stack/rec(� n 1) (Push stack(stack-rec-mult n)))))

(defineEmptyStack(cons(stack-rec-empty) empty))

In addition, the places thatusethe stack contents also have to change to adjust to the new representation.Popuses
the contents (it used to call (first stack) as a function). Now,Popwill take astack-recordfrom the stack, so it needs a
casesstatement:

(define(Pop stack value)
(let ([top-rec(first stack)])

(casesstack-record top-rec
[stack-rec-mult(n) . . .]
[stack-rec-empty() . . .])))

What should Popdo with those records though? Previously,Popcalled the functions on the stack, which caused their
bodies to be evaluated withvalueas an argument. We can recreate that effect here by moving thecode that used to be
in the body of those functions into the corresponding cases for Pop. The resulting (entire) program appears as follows:

(define-datatypestack-record StackRec?
[stack-rec-mult(n number?)] ;; use as “combine data with rest of stack using mult”
[stack-rec-empty]) ;; signals bottom of stack

(define(fact/stack/rec n stack)
(if (zero? n)

4

(Pop stack1)
(fact/stack/rec(� n 1) (Push stack(stack-rec-mult n)))))

(define(Pop stack value)
(let ([top-rec(first stack)])

(casesstack-record top-rec
[stack-rec-mult(n) (Pop(rest stack) (� n value))]
[stack-rec-empty() value])))

(define(Push stack new-record)
(cons new-record stack))

(defineEmptyStack(cons(stack-rec-empty) empty))

(define(fact n) (fact/stack/rec n EmptyStack))

This fact program looks much lower-level than our original version: we’re no longer using lambdas to capture any
data or control, and we have an explicit notion of stacks in our programs. This program doesn’t look syntactically like
assembly code, but we’re clearly making progress.

To recap, what steps did we perform to compilefact?

1. Convert the source program to CPS

2. Replace operations on contexts (k’s) with stack operations

3. Replace functions on stack with records. We need a new record variant for each place where we created a
continuation in the CPSed program. The fields of the record store the environment of the original continuation
(lambda).

4. ExpandPopto process the new records. The code executed in each case is just the body of the originallambda
expression corresponding to that type of record. In that body, we replace uses of the parameter to thelambda
with thevalueargument toPop.

You could write programs to perform these transformations automatically, so we’re still in the realm of what a real
compiler could do. Before we refine our compiled program to resemble assembly more closely, let’s try another
example.

An Aside

Given the CPS version and the insight that only the numbers matter in the contexts forfact, you could also produce
the following program, which matches the standard accumulator-style program taught in intro programming classes:

(define(fact/accum n stack)
(if (zero? n)

(Pop stack1)
(fact/accum(� n 1) (Push stack n))))

(definePop�)
(definePush�)
(defineEmptyStack1)
(define(fact n) (fact/accum n EmptyStack))

5

Why didn’t we use this version, instead of the stack records version? To develop this version, you need insight into the
stack contents and you need to know that * is associative. Although we motivated the transformation to stack records
by knowing what the program does, a compiler could perform that transformation without that knowledge. Our goal
in this lecture is to stick to compiler-implementable transformations.

Example 2: Compiling Tree-Sum

Cosider the following program for summing the numbers in a binary tree:

(define-datatypetree Tree?
[empty-tree]
[node(n number?)

(left Tree?)
(right Tree?)])

(define(tree-sum atree)
(casestree atree

[empty-tree() 0]
[node(n left right) (+ n

(tree-sum left)
(tree-sum right))]))

Let’s produce a compiled version. We first convert this to CPS:

(define(tree-sum/k atree k)
(casestree atree

[empty-tree() (k 0)]
[node(n left right)

(tree-sum/k left(lambda (lv)
(tree-sum/k right(lambda (rv)

(k (+ n lv rv))))))]))

(define(tree-sum atree)
(tree-sum/k atree(lambda (x) x)))

Next, eliminate the uses of lambdas by implementing the stack with lists and the contexts with records.

(define-datatypestack-record StackRecord?
[rec-bottom]
[rec-add-left(node-val number?)

(right-tree Tree?)]
[rec-add-right(node-val number?)

(left-value number?)])

(define(tree-sum/rec atree stack)
(casestree atree

[empty-tree() (Pop stack0)]
[node(n left right)

(tree-sum/rec left(Push stack(rec-add-left n right)))]))

(define(Pop stack value)
(let ([top-rec(first stack)])

6

(casesstack-record top-rec
[rec-bottom() value]
[rec-add-left(node-val right)

(tree-sum/rec right(Push(rest stack)
(rec-add-right node-val value)))]

[rec-add-right(node-val lv) (Pop(rest stack) (+ node-val lv value))])))

(define(Push stack record)
(cons record stack))

(defineEmptyStack(cons(rec-bottom) empty))

(define(tree-sum atree)
(tree-sum/rec atree EmptyStack))

Compared to thePopwe wrote forfact, thisPopseems a lot more complicated. In fact, the recursive call to process the
right tree happens inside ofPop, not insidetree-sum/rec. This is consistent with the steps we defined after transforming
fact though: the recursive call to process the right tree is in thebody of continuation for processing the left tree, and
the body of the left continuation should become the computation to do in thePopcase. We need different stack record
variants for each of the left and right subtrees because these two continuations perform different computations.

Having done two examples, it’s worth convincing ourselves that the stack records achieve the same role in the compiled
program as thelambdas did in the CPSed version. Thelambda expressions did two tasks for us: they delayed
computation of the continuation body, and they captured theenvironment in thelambda to use when performing that
later computation. We capture the environment in the stack records, and the computation is delayed until we pop
each record off the stack. Once we push a record for the left subtree, that record isn’t popped until the program has
computed the sum of that whole subtree: thus, we continue thecomputation (invoke the continuation) only after we’ve
finished processing the entire left subtree (if you don’t seethis, hand trace the stack contents on a small tree example).
So our stack records do implement all of the features of the original lambda continuations.

This example emphasizes that we view the stack records as representing the operations that happen once all of the data
is available – in other words, the records are the continuations, just in a different representation.

Example 3: Compiling Filter-Positive

The fact example showed how to make stacks explicit. Withtree-sumwe saw how to extend the techniques of the
first example to process tree-shaped data. The compiled programs in both cases feel more assembly-like, but they still
rely on many features of Scheme, such as Scheme’s records (datatypes) and lists, not to mention Scheme’s stack for
holding arguments. In the rest of this lecture, we’ll eliminate these dependencies on Scheme as well.

Let’s write a function that traverses a list of numbers and gathers the positive numbers into a new list.

(define(filter-pos L)
(cond [(empty? L) empty]

[(cons? L)
(cond [(> (first L) 0)

(cons(first L) (filter-pos(rest L)))]
[else(filter-pos(rest L))])]))

Convert this to CPS:

7

(define(filter-pos/k L k)
(cond [(empty? L) (k empty)]

[(cons? L)
(cond [(> (first L) 0)

(filter-pos/k(rest L) (lambda (lst)
(k (cons(first L) lst))))]

[else(filter-pos/k(rest L) k)])]))

(define(filter-pos L)
(filter-pos/k L(lambda (x) x)))

As usual, the next step is to make the stack explicit.

(define-datatypestack-rec StackRec?
[bottom-rec]
[cons-rec(first-num number?)])

(define(filter-pos/stack L stack)
(cond [(empty? L) (Pop stack empty)]

[(cons? L)
(cond [(> (first L) 0)

(filter-pos/stack(rest L) (Push stack(cons-rec(first L))))]
[else(filter-pos/stack(rest L) stack)])]))

(define(Pop stack value)
(let ([top-rec(first stack)])

(casesstack-rec top-rec
[bottom-rec() value]
[cons-rec(first-val) (Pop(rest stack) (cons first-val value))])))

(define(Push stackrec) (consrec stack))
(defineEmptyStack(cons(bottom-rec) empty))

Note: thefirst-numin thestack-rechere is a bit of an optimization: we really should put the listL into the record,
sinceL, not (first L) is in the environment of the continuation. We’ll continue with the optimization in this code; just
be aware that an implemented compiler would storeL instead.

Tail Calls and the Machine Stack

In a CPSed program, the continuation functions effectivelyturn the usual machine stack into data. Our trace of the
continuations from the factorial program (earlier in thesenotes) illustrates this nicely. Our program transformations
up until now have made this stack more explicit. The ”stacks”in our program mimic the contents of the machine stack
while running the program.

Look at the two recursive calls in thefilter-posnk example: one augments the stack while the other does not. This
simple observation actually has a deep and surprising consequence:

Stacks are not necessary for calling functions.

The stack plays a role in evaluating arguments, but otherwise has no role with regards to calling functions (otherwise
we would have to manipulate the stack somehow in both recursive calls tofilter-posnk). This contradicts what most of
us have been taught about stacks and function invocation. What’s going on?

8

Procedure calls that do not place any burden on the stack are called tail calls. Converting a program to CPS helps
us identify tail calls, though it’s possible to identify them from the program source itself. An invocation ofg in a
proceduref is a tail call if, in the control path that leads to the invocation of g, the value off is determined by the
invocation ofg. In that case,g can send its value directly to whoever is expectingf ’s value; this verbal description is
captured precisely in the CPSed version (sincef passes along its resumer tog, which sends its value to that resumer).
This insight is employed by compilers to performtail call optimization, whereby they ensure that tail calls incur no
stack growth.

Here are just a few of the issues that arise as a consequence ofthe notion of tail calls:� With tail calls, it no longer becomes necessary for a language to provide looping constructs. Whatever was
previously written using a custom-purpose loop can now be written as a recursive procedure. So long as all
recursive calls are tail calls, the compiler will convert the calls into gotos, accomplishing the same efficiency as
the loop version. For instance, here’s a very simple versionof a for loop, written using tail calls:

(define(for init condition change body result)
(if (condition init)

(for (change init)
condition
change
body
(body init result))

result))

By factoring out the invariant arguments, we can write this more readably as

(define(for init condition change body result)
(local [(define(loop init result)

(if (condition init)
(loop (change init)

(body init result))
result))]

(loop init result)))

To use this as a loop, write

(for 10 positive? sub1+ 0)

which evaluates to55. It’s possible to make this look more like a traditionalfor loop using macros, which we
will discuss later this semester. In either case, notice howsimilar this is to afold operator! Indeed,foldl employs
a tail call in its recursion, meaning it is just as efficient aslooping constructs in more traditional languages.� While tail calls are traditionally associated with functional languages such as Scheme and ML, there’s no reason
they must be. It’s perfectly possible to have tail calls in any language. Indeed, as our analysis above has
demonstrated, tail calls are thenatural consequence of understanding the true meaning of function calls. A
languages that deprives you of tail calls is cheating you of what is rightfully yours—stand up for your rights!
Because so many language designers and implementors habitually mistreat their users, however, programmers
have become conditioned to think of all function calls as inherently expensive, even when they’re not.� A special case of a tail call is known astail recursion, which occurs when the tail call within a procedure is to
itself. This is the behavior we see in the procedurefor above. In fact, tail recursion is only a special case of tail
calls in general. While it is animportantspecial case (since it enables the implementation of loops), it is not the
mostinterestingcase.

9

Sometimes, programmers will find it natural to split a computation across two procedures, and use tail calls to
communicate between them.2 This leads to very natural program structures. A programmerusing a language
like Java, however, is forced into an unpleasant decision. If they split code across methods, they pay the penalty
of method invocations that use the stack needlessly. But even if they combine the code into a single procedure,
it’s not clear that they can easily turn the two code bodies into a single loop. Even if they do, the structure of the
code has now been altered irrevocably. Consider the following example:

(define(even? n)
(if (zero? n)

true
(odd?(sub1 n))))

(define(odd? n)
(if (zero? n)

false
(even?(sub1 n))))

Try writing this entirely through loops!

Therefore, even if a language gives you tail recursion, remember that you are getting less than you deserve.
Indeed, it sometimes (but not always: there are notable counterexamples to the following claim) suggests a
particularly clueless language implementor because they realized that the true nature of function calls permitted
calls that consumed no new stack space, but restricted its use, possibly owing to a failure of imagination. The
primitive you really want a language to support is tailcalling. With it, you can express solutions more naturally,
and also build very interesting abstractions of control flowpatterns.� Note that CPS converts every program into a form where every call is a tail call! This means we’ve optimized
our program so that we can implement all of the function callsas jumps.

Side Note: Not all languages require optimized handling of tail calls.Scheme does (its required in the language
standard). Other languages like Pascal don’t. Thus, even though your program may contain function calls that look
like tail calls, language implementations may not provide the corresponding optimization.

Handling Jumps

I’ve claimed that by converting all function calls to tail calls, we can simply implement our function calls as jumps.
If you examinefilter-pos/stackcarefully though, you’ll see that are function calls aren’tquite jumps because they still
have arguments. To honestly claim that our function calls are jumps, we have to eliminate the arguments.

Luckily, arguments are easy to eliminate. We’ll define a set of registers, and just put the arguments into the registers.
For this program, we’ll need one register for the stack and one for the list of numbers.3

(define=reg1= ’dummy)
(define=stack= ’dummy)

2They may not even communicate mutually. In the second version of the loop above,for invokesloop to initiate the loop. That call is a tail call,
and well it should be, otherwise the entire loop will have consumed stack space. Because Scheme has tail calls, notice howeffortlessly we were able
to create this abstraction. If the language supprted only tail recursion, the latter version of the loop, which is more pleasant to read and maintain,
would actually consume stack space against our will.

3Clearly, we’re relying on our knowledge of the program here to know how many registers to define. In reality, a machine has afixed number of
registers and compilers perform a step calledregister allocationto map program data to registers.

10

Now, rewrite the rest of the code to use the registers. When wemake a tail call, we’ll mutate the registers instead of
passing arguments explicitly.

(define-datatypestack-rec StackRec?
[bottom-rec]
[cons-rec(first-num number?)])

(define=reg1= ’dummy) ;; will hold the L parameter
(define=stack= ’dummy) ;; will hold the stack parameter

(define(filter-pos/reg)
(cond [(empty?=reg1=) (Pop=stack= empty)]

[(cons?=reg1=)
(cond [(> (first=reg1=) 0)

(begin
(set!=stack= (Push=stack= (cons-rec(first=reg1=))))
(set!=reg1= (rest=reg1=))
(filter-pos/reg))]

[else
(begin

(set!=reg1= (rest=reg1=))
(filter-pos/reg))])]))

(define(Pop stack value)
(let ([top-rec(first stack)])

(casesstack-rec top-rec
[bottom-rec() value]
[cons-rec(first-val) (Pop(rest stack) (cons first-val value))])))

(define(Push stackrec) (consrec stack))

(define(filter-pos L)
(begin

(set!=reg1= L)
(set!=stack= (cons(bottom-rec) empty))
(filter-pos/reg)))

A few things to note here:� Notice how the calls tofilter-pos/regare now truly jumps – the arguments are gone (they were already tail calls).� Having a helper function for the original interface offilter-posis very helpful now, as we have to remember to
set the register contents before starting the program.� We didn’t rewritePopto use registers – why not?Pop is part of ourimplementationof stacks (i.e., the run-time
system), it is not part of the program that we are trying to compile. Up to now, we are still using Scheme lists to
implement the machine stack. But read on ...

Question: Is this approach safe (as in, will it preserve the correctness of our original code)? We’ve explicitly avoided
mutation in this course because we can’t undo assignments (unlike when we pass arguments recursively). Why isn’t
the mutation a problem here? (Remember, these techniques should allow you to compile any program – they are not
specific tofilter-pos).

11

Representing the Stack as a Vector

Actual machines don’t implement stacks with lists; they usememory, which is just an array. In Scheme, arrays are
calledvectors. To reduce our reliance on Scheme lists, we will now implement the stack using vectors.

We will need the following Scheme vector primitives:� (make-vector n) creates a vector of lengthn.� (vector-set! v val pos) sets positionposof vectorv to valueval. Vectors use 0-based indexing and Scheme yields
an error ifposis out of bounds.� (vector-ref v pos) returns the value stored in positionposof vectorv. Scheme yields an error ifpos is out of
bounds.

First, we need to define the stack, a stack pointer (to remember where the top of the stack is – actually, our stack
pointer will point to the first open slot in the stack, not the last used slot), and the registers:

(define the-stack(make-vector100))

(define=sp= 0) ;; the stack pointer
(define=reg1= ’dummy)
(define=tmp0= ’dummy)

The main change in the code is that the stack no longer needs tobe a parameter because it is a global variable. In other
words, we mainly need to editPopandPush.

(define-datatypestack-rec StackRec?
[bottom-rec]
[cons-rec(first-num number?)])

(define(filter-pos/stk)
(cond [(empty?=reg1=) (Pop empty)]

[(cons?=reg1=)
(cond [(> (first=reg1=) 0)

(begin
(set!=tmp0= (first=reg1=))
(set!=reg1= (rest=reg1=))
(Push(cons-rec=tmp0=))
(filter-pos/stk))]

[else
(begin

(set!=reg1= (rest=reg1=))
(filter-pos/stk))])]))

(define(Pop value)
(let ([top-rec(vector-ref the-stack(� =sp= 1))])

(begin
(set!=sp= (� =sp= 1))
(casesstack-rec top-rec

[bottom-rec() value]
[cons-rec(first-val) (Pop(cons first-val value))]))))

12

(define(Pushrec)
(begin

(vector-set! the-stack=sp= rec)
(set!=sp= (+ 1 =sp=))))

(define(filter-pos L)
(begin

(set!=sp= 0)
(Push(bottom-rec))
(set!=reg1= L)
(filter-pos/stk)))

Why the sudden introduction of register=tmp0= (the previous version just used (first =reg1=) in the code. In the
spirit of making our code as close to machine code as possible, we’re making the instructions (pushed onto the stack)
operate on data in registers.

Time to take stock.4 How close is our code to language-independent machine code?Certainly a lot closer – we no
longer use Scheme lists for the stack, the function calls arejust jumps, and the arguments are passed in registers.
What’s left? Well, we are still using Scheme lists for the input data (the list of numbers). If we’ve really compiled the
program, we need to reduce our dependenies on Scheme’s listsfor data as well.

How does Scheme handle data such as lists? When we callcons, Scheme allocates memory on theheap. The heap
is another segment of memory for longer-term storage than the stack. We’ll need to implement the heap explicitly to
finish our compiler.

Making the Heap Explicit

We will implement the heap as another vector (since it is justanother portion of memory). We will allocate space on
the heap for our list data structures.

First, the definition of the heap itself:

(define the-heap(make-vector100))
(defineheap-ptr0)

Next, in order to use the heap to store lists, we’ll need functions to allocate space for lists. We have two kinds of lists
(emptyandcons), so we’ll need one allocator function for each. These functions advance the heap pointer by enough
cells to store the corresponding data, then put the needed data into the appropriate cells.

The following diagram shows how we would store the list (cons1 (cons2 empty)) in the heap. Before we allocated
thecons, the heap-pointer was at the cell now containing the ’empty. Note two things: first, we store pointers (really
numbers giving a memory address/vector index) for the rest of the list because we don’t know how large that list will
be (we can’t allocated a fixed number of cells to store it). Second, when we store data in the heap, we also tag it with
its type – this is necessary to implement operations such asempty?andcons?.

4since we’ve just taken the stack ...

13

|--------------------------
v |

--
| ’empty | ’cons | 2 | | ’cons | 1 | | ...
--

ˆ |
|__________________|

;; alloc-empty :! location
(define(alloc-empty)

(begin
(vector-set! the-heap heap-ptr’empty)
(set!heap-ptr(+ heap-ptr1))
(� heap-ptr1)))

;; alloc-cons : num location! location
(define(alloc-cons fst rst)

(begin
(vector-set! the-heap heap-ptr’cons)
(vector-set! the-heap(+ 1 heap-ptr) fst)
(vector-set! the-heap(+ 2 heap-ptr) rst)
(set!heap-ptr(+ heap-ptr3))
(� heap-ptr3)))

Now that we’ve changed our representation of lists, we need to provide our own implementations of the list primitives
first, rest, empty?, andcons?. Instead of taking lists as inputs, our new primitives take addresses on the heap (vector
indices). Note that the new list primitives rely on the implementation details of the allocation primitives.

(define(first/heap addr)
(vector-ref the-heap(+ 1 addr)))

(define(rest/heap addr)
(vector-ref the-heap(+ 2 addr)))

(define(cons?/heap addr)
(eq?(vector-ref the-heap addr) ’cons))

(define(empty?/heap addr)
(eq?(vector-ref the-heap addr) ’empty))

Finally, we rewrite thefilter-poscode to use our new list primitives in place of Scheme’s primitives:

(define(filter-pos/stk)
(cond [(empty?/heap=reg1=) (Pop(alloc-empty))]

[(cons?/heap=reg1=)
(cond [(> (first/heap=reg1=) 0)

(begin
(set!=tmp0= (first/heap=reg1=))
(set!=reg1= (rest/heap=reg1=))
(Push(cons-rec=tmp0=))
(filter-pos/stk))]

[else
(begin

14

(set!=reg1= (rest/heap=reg1=))
(filter-pos/stk))])]))

(define(Pop value)
(let ([top-rec(vector-ref the-stack(� =sp= 1))])

(begin
(set!=sp= (� =sp= 1))
(casesstack-rec top-rec

[bottom-rec() value]
[cons-rec(first-val) (Pop(alloc-cons first-val value))]))))

How do we write our newfilter-poshelper function? Normally, that function would input a Scheme list. You could
write a function that takes a Scheme list and allocates the heap memory accordingly, but that’s not interesting as far as
this lecture is concerned. Instead, we can just hardcode thelist into the program.

(define(filter-pos)
(let ([mem(alloc-cons�2 (alloc-cons

3 (alloc-cons
0 (alloc-cons�1 (alloc-cons9 (alloc-empty))))))])

(begin
(set!=sp= 0)
(Push(bottom-rec))
(set!=reg1=mem)
(printf “answer: ˜a˜nheap: ˜a ˜n” (filter-pos/stk) the-heap))))

This final version of the program uses no Scheme-specific constructs: we’ve reduced everything to basic, low-level
language operations. You could translate this program to C or assembly fairly easily at this point. Thus, we’ve
achieved our goal of seeing how to compile programs startingfrom CPS. If you want a compiler for one of our
languages, implement each of these steps as a separate program, then compose the steps to get a compiled version.

15

