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Abstract 
 

This paper describes our proposed technique 
AutoDomainMine that performs data mining guided by 
fundamental knowledge of the domain. The data being mined 
consists of input conditions from quenching experiments and 
the resulting heat transfer curves, i.e., plots of heat transfer 
coefficients versus part temperature. Since heat transfer 
coefficients characterize quenching, the estimation assists 
decision-making. This avoids running laboratory experiments 
which consume considerable time and resources. 
AutoDomainMine integrates two data mining techniques, 
clustering and classification, into a learning strategy. It 
clusters curves resulting from existing experiments and uses 
decision tree classifiers to learn the clustering criteria, i.e., 
input conditions characterizing the clusters. The learned 
criteria are used to design a representative pair of input 
conditions and heat transfer curve per cluster.  The decision 
trees and representatives serve as the basis for estimation. 
When input conditions of an unperformed experiment are 
submitted, the decision tree path is traced to estimate its 
cluster and hence the corresponding heat transfer curve. Also 
when a desired heat transfer curve is submitted, it is compared 
with the representative curves. The input conditions of the 
closest matching curve are the estimated conditions to achieve 
the desired curve. AutoDomainMine on evaluation gives 
accuracy higher than state-of-the-art estimation techniques.  
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1. Introduction 
 
The results of experiments in quenching heat treatment are 
often plotted as heat transfer curves to aid analysis and 
comparison of the corresponding processes. Performing 
laboratory experiments consumes significant time and 
resources. This motivates the need for computational 
estimation of the resulting curves given the input conditions of 
an experiment. That is, there is a need to computationally 
estimate heat transfer curves as a function of temperature.  

 
This computational estimation can be used in various 
applications such as simulations and decision support. It is 
also desirable to estimate the conditions that would obtain a 
particular heat transfer curve, if the laboratory experiment 
were performed. This estimation can be useful in selecting 
process parameters for industrial heat treatment processes.  
 
The goals of the required estimation technique are stated 
below [19] with specific reference to quenching heat treatment.  
1. Given the input conditions of a quenching experiment, 
estimate the resulting heat transfer curve that would be 
obtained. 
2. Given the desired heat transfer curve in a quenching 
experiment, estimate a set of input conditions that would 
obtain it. 
 
Techniques such as naïve and weighted similarity search [7, 
22], case-based reasoning approaches [1, 8, 13, 15] and 
mathematical modeling in heat treating [14, 4] are not accurate 
enough. This elaborated in the related work section of this 
paper. There is a need to develop a technique that performs the 
desired estimation in less time than a laboratory experiment, 
with minimal domain expert intervention and with accuracy 
acceptable for decision support in the domain.    
 
We propose a computational estimation technique based on 
data mining [19]. Data mining is the process of discovering 
interesting patterns and trends in large datasets to guide 
decisions about future activities [7]. In AutoDomainMine, the 
two data mining techniques of clustering [9] and decision tree 
classification [10] are integrated into a learning strategy for 
estimation. This approach automates a typical learning method 
of scientists. In this paper, the AutoDomainMine approach is 
described with particular reference to heat treating.  
 
AutoDomainMine has been subjected to rigorous evaluation 
[19] with quenching experimental data. It is found that 
estimation given by AutoDomainMine is better than what 
would be obtained state-of-the-art approaches such as 
similarity search [7, 22]. The estimation of heat transfer 
coefficients as a function of temperature using 
AutoDomainMine, is considered useful for decision support in 
heat treating, as corroborated by domain experts.   
 
AutoDomainMine has several applications. The main 
application is enhancing the decision support functionality of 
our earlier system QuenchMiner™ [21]. Also, it can be used 



to select process parameters for other industrial applications in 
quenching. More applications include serving as the input to 
software tools such as DANTE [6], DEFORM [16], 
SYSWELD [5], and CHT-bf [12, 11] that perform simulations. 
In addition, the AutoDomainMine estimation could be useful 
for intelligent tutoring systems in heat treatment [3].  
 
The rest of this paper is organized as follows. Section 2 
explains the basic AutoDomainMine technique and its use in 
computational estimation. Section 3 describes the applications 
of this estimation in the real world. Section 4 summarizes 
significant enhancements to AutoDomainMine. Section 5 
gives the user evaluation of the software tool developed using 
the AutoDomainMine technique. It includes the evaluation 
before and after the enhancement.  Section 6 outlines related 
work. Section 7 gives the conclusions and ongoing research.  
 
 
2. Computational Estimation of Heat Transfer 

Curves with AutoDomainMine 
 
2.1 Proposed Approach 
The proposed AutoDomainMine approach [19] can be used to 
computationally estimate heat transfer curves with its two-step 
process of knowledge discovery and estimation, as described 
below. AutoDomainMine first discovers knowledge from 
experimental results by integrating clustering and 
classification. It then uses the discovered knowledge to 
estimate curves resulting from unperformed experiments given 
their input conditions.  
 
Clustering is the process of placing a set of physical or 
abstract objects into groups of similar objects [9, 7]. 
Classification is a form of data analysis that can be used to 
extract models to predict categorical labels [22, 10]. These two 
data mining techniques are integrated in AutoDomainMine as 
explained here with illustration. 

 
 

2.2 Knowledge Discovery in AutoDomainMine  
The knowledge discovery step is depicted in Fig. 1. In 
discovering knowledge from existing experiments, clustering 
[9] is done over the heat transfer curves from actual 
experiments. Once the clusters of experiments are identified 
by grouping their heat transfer curves, a syntactic label is 
obtained for each cluster. The cluster labels form the 
classification target. Decision tree classification [10] is then 
used to learn the clustering criteria, namely, the input 
conditions that characterize each cluster. The decision tree 
helps understand the relative importance of the input 
conditions such as quenchant, part material agitation etc. 
 
The paths of each decision tree are then traced to build a 
representative pair of input conditions and heat transfer curve 
for each cluster. The decision trees and representative pairs 
form the discovered knowledge. Hence this step is referred to 
as the knowledge discovery step. This is a one-time step that is 
performed on the experimental data stored in the database to 
learn in AutoDomainMine. 

 

 
 

Figure 1: AutoDomainMine Knowledge Discovery Step 
 
2.3 Estimation in AutoDomainMine 
Estimation is performed using the discovered knowledge as 
shown in Fig. 2. This step is a recurrent one that has to be 
performed each time the user submits a new experiment to 
AutoDomainMine for estimation.  
 
In order to estimate a heat transfer curve, given a new set of 
input conditions, the decision tree is searched to find the 
closest matching cluster. The representative heat transfer 
curve of that cluster is returned as the estimated curve for the 
given set of conditions. To estimate input conditions to obtain 
a given heat transfer curve, the representative curves are 
searched to find the closest match. The representative 
conditions corresponding to the match are conveyed as the 
estimated input conditions that would obtain the desired curve. 
Recall that the relative importance of the conditions has 
already been learned in the knowledge discovery step. The 
estimation thus takes into account such domain semantics [19].  
 

 
 

Figure 2: AutoDomainMine Estimation Step 
 

2.4 Learning Analogous to Scientists  
The proposed approach aims to automate a learning strategy of 
scientists [17]. They often group experiments based on the 
similarity of the resulting graphical plots, such as heat transfer 
curves. They then reason the causes of similarity between 



groups in terms of the impact of the input conditions on the 
resulting plots. This is illustrated in Fig. 3. For example, the 
following facts were learned by Materials Scientists from the 
results of experiments [17]. 
 

• Thin oxide on a part surface causes vapor blanket 
around the part to break, resulting in fast cooling. 

• Thick oxide on a part surface acts as an insulator, 
resulting in slow cooling. 

 
The learning in these experiments was done by [17]:  

• Performing quenching experiments with thick or thin 
oxide respectively, with all other conditions similar.  

• Grouping based on heat transfer curves 
• Reasoning based on quenching input conditions     
 

This strategy is automated in our approach by integrating 
clustering and classification.  Since a typical learning strategy 
of scientists is used in knowledge discovery, estimation 
obtained using this knowledge is expected to be more 
meaningful with respect to the domain. Thus the estimation 
accuracy is higher than with state-of-the-art techniques as 
confirmed by the evaluation. 
 
 

 
 
Figure 3: Automating Typical Learning Strategies of Scientists 

 
 

3. Applications of AutoDomainMine 
 
3.1 QuenchMiner™ 
The main application of AutoDomainMine is to enhance the 
decision support functionality of our earlier system 
QuenchMiner™ [VTRWMS-03]. The decision support system 
of QuenchMiner™ discovers knowledge from existing 
experimental data stored in relational databases in plain text 
and numbers. It uses data mining techniques such as 
association rules [2] and applies the knowledge discovered to 
estimate parameters of interest in experiments given their 
input conditions. These parameters are typically ranges of 
cooling rates and heat transfer coefficients. They could even 

be other parameters such as distortion tendencies. 
QuenchMiner™ also acts as a search engine for existing 
experimental data. It retrieves the heat transfer curves obtained 
from existing experiments stored in the database, based on the 
given queries. Thus it provides at-a-glance information for 
decision-support.  
 
An example of the decision support functionality of 
QuenchMiner™ is illustrated here. In Fig. 5, the user input to 
a particular case is shown. The user submits information on 
quenching conditions, for the system to estimate the average 
heat transfer coefficients that would be obtained in the process. 
QuenchMiner™ estimates ranges of heat transfer coefficients 
in terms of categories such as high, medium and low. This is 
shown in Fig. 6. 
 

 
 

Figure 5: Example of QuenchMiner Estimation Input 
 
 

 
 

Figure 6: Example of QuenchMiner Estimation Output 
 
However, QuenchMiner™ only estimates ranges of 
parameters such as cooling rates and heat transfer coefficients. 
In addition, it retrieves existing experimental data, on heat 
transfer curves. AutoDomainMine goes a step further than 
QuenchMiner™ by estimating the heat transfer curve that 



would be obtained in an unperformed experiment, given its 
input conditions. This further assists the users by providing 
more information helpful in making decisions about the 
corresponding real processes.  Hence the AutoDomainMine 
estimation enhances decision support in heat treating. This is 
elaborated with illustration in the user evaluation section. 
 
3.2 DANTE 
The DANTE software is a set of subroutines describing the 
thermal, mechanical and metallurgical response of steel to 
heating and cooling [6]. The term DANTE is an acronym for 
Distortion Analysis of Thermal Engineering. Using DANTE, 
simulations can be developed and executed to study the heat 
treatment of steel.  
 
The DANTE software aids in predicting the following 
parameters in steel heat treatment [6]:  

• Residual stress state 
• Distortion of quenched parts 
• Hardness profile 
• Metallurgical phase fraction and distribution in 

carburized or through-hardened parts.  
 

The software tool includes model building and meshing, 
assignment of boundary conditions, defining process variables, 
and generating finite element models. The material model 
used in the finite element analysis is a multiphase internal 
state variable model. In this the mechanical behavior of the 
composite structure is calculated from the behavior of each 
individual phase [6].  
 
The DANTE software can use the boundary conditions from 
the heat transfer curves obtained with different quench 
conditions to perform simulations. Since the heat transfer 
curve is a plot of the heat transfer coefficients as a function of 
part temperature, it is useful for applications that need the 
values of these heat transfer coefficients at various 
temperatures.  The AutoDomainMine estimation could thus be 
useful to a software tool such as DANTE. Since the heat 
transfer curve is estimated in AutoDomainMine given the 
input conditions of an experiment, the resulting estimate can 
be used to provide the boundary conditions. The accuracy of 
the estimation is likely to affect the quality of the simulations 
produced by DANTE. Hence it is desirable to use 
AutoDomainMine, since it is more accurate than state-of-the-
art estimation techniques [19]. 
 
3.3 DEFORM-HT 
The simulation software DEFORM, namely Design 
Environment for FORMing has Heat Treatment component 
called DEFORM-HT [16]. This component provides a finite 
element modeling system for simulating heat treatment 
processes.  It predicts thermal, mechanical and metallurgical 
responses of parts during heat treatment, for example, heat 
treat distortion, quench cracking and residual stresses. 
DEFORM-HT can also provide information on phase 
transformation and phase volume fraction. Typical heat 
treatment processes in DEFORM-HT are [16]: 

• Normalizing 

• Quenching 
• Austenizing 
• Tempering 
• Carburizing 
• Aging 
• Solution treatments 
• Stress relieving 

 
The DEFORM-HT software gives important information 
about process parameters needed for controlling and 
optimizing heat treatment. It can visualize microstructure, 
temperature and stress during heat treating that would be 
extremely difficult to do with laboratory experiments [16]. 
The estimation provided by AutoDomainMine could be useful 
for such simulations in DEFORM-HT. The estimation of heat 
transfer coefficients as a function of temperature could 
provide some of the variables needed for analysis and 
modeling for the simulation. The output of the 
AutoDomainMine system could thus be used as the input to 
tools such as DEFORM-HT. 
 
3.4 SYSWELD 
The SYSWELD tool [5] is built for simulating heat treatment, 
welding and welding assembly processes. It incorporates 
various aspects of material behavior, design and process. In 
the area of heat treatment in particular, SYSWELD provides 
the coupled modeling of complex physical phenomena such as 
[5]: 

• Electromagnetism 
• Heat transfer 
• Diffusion and precipitation of chemical elements 
• Phase transformation and mechanics 

 
This software in performing simulations takes into account 
several factors such as processes, parameters, part geometry, 
thermal, metallurgical and mechanical material behavior [5]. 
This is where the AutoDomainMine estimation can be useful. 
It can provide some of the parameters needed in terms of heat 
transfer coefficients at various part temperatures. The 
AutoDomainMine estimation can also be used to infer the 
cooling rates at different temperatures, since the heat transfer 
coefficients are themselves derived from cooling rates.  Since 
parameters such as cooling rates and heat transfer coefficients 
can be predicted by AutoDomainMine, this system could be 
useful in providing inputs to SYSWELD. Thus the application 
of AutoDomainMine can be extended to some extent in the 
welding area as well, in particular the overlapping area 
between welding and heat treatment. 
 
3.5 CHTE Software Tools  
Software tools such as CHT-bf and CHT-cf [12, 11] 
developed at CHTE, WPI could make use of the estimations 
produced by.  CHT-bf stands for Center for Heat Treating – 
batch furnace. This tool can be used to simulate the heat 
treating of parts in a furnace. It contains a database for 
materials of the parts undergoing heat treatment. The database 
also includes furnace elements, furnaces, furnace atmospheres 



and fuels. This data is helpful to the user to execute the 
software without explicitly defining all parameters.  
 
CHT-bf has the ability to calculate important heat treatment 
terms. In particular, some of its features include the following 
[12, 11]: 

• Calculating different heat losses from the furnace. 
• Predicting the heat needed for the load under various 

conditions.  
• Simulating the effect of using different fixtures. 
• Plotting the heat stored in the furnace and load as a 

function of time. 
 
CHT-cf is a tool developed to perform similar functions for 
continuous furnaces [12, 11]. These tools currently use 
QuenchMiner™ [VTRWMS-03] for some tasks. They use 
heat transfer coefficients obtained from performed 
experiments to perform further analysis. However, at present 
the only heat transfer coefficients provided by 
QuenchMiner™ are from experiments already performed. 
That is, QuenchMiner™ retrieves the heat transfer curve 
corresponding to specific input conditions submitted as search 
criteria, thus providing the required data. 
 
AutoDomainMine provides heat transfer coefficients given 
input conditions of experiments not performed by estimating 
heat transfer curves given their input conditions. Thus it 
effectively increases the sample space of the experiments. 
Analysis can now be performed for a wider range of input 
conditions, even if the corresponding experiment was not 
conducted in the laboratory. Thus more inputs can be provided 
to tools such as CHT-bf and CHT-cf, hence providing more 
robust analysis. The effectiveness of this analysis depends on 
the accuracy of the AutoDomainMine estimation.  
 
3.6 Quenching Processes in the Industry  
The quenching conditions estimated by AutoDomainMine 
when a desired heat transfer curve is given, can be useful is 
selecting parameters for quenching processes in the industry. 
If the user needs a particular nature of heat transfer 
characterized by a given heat transfer curve, then the 
AutoDomainMine system can estimate the quenching 
conditions needed. The user can experiment with the system 
until a satisfactory nature of heat transfer is achieved and the 
corresponding input conditions are predicted. This saves the 
cost of performing a laboratory experiment to determine the 
process parameters needed for real quenching in the industry. 
Note that addition to augmenting the QuenchMiner™ 
functionality, this application of AutoDomainMine can be 
used for other systems requiring computational estimation for 
parameter selection.  
 
3.7 Intelligent Tutoring Systems 
AutoDomainMine is likely to be useful tutoring systems in 
heat treatment and related areas, designed using artificial 
intelligence. For example, the AutoDomainMine estimation 
could be used to extend the functionality of computerized 
tutors such as the Computer Coach project in the University of 
Amsterdam [3]. The original goal of this project was to serve 

as a coach for thermodynamics. However, this fragmented into 
a number of research projects on different aspects of heat and 
temperature.  
 
A system such as AutoDomainMine could be useful in further 
extending the scope of such a project in understanding heat 
treatment of materials. The heat transfer curves estimated 
using various input conditions, and also the conditions 
estimated for obtaining heat transfer curves, can help students 
understand heat treatment processes. The relative importance 
of process parameters, the nature of heat treatment under 
different sets of input conditions and the impact of altering 
specific conditions on the resulting curve can all be observed. 
This can be used to draw useful inferences that corroborate 
and possibly augment theoretical knowledge in the domain.  
 
3.8 Applications in Related Domains  
AutoDomainMine can also be applied to other related domains 
with experimental results characterized by 2-dimensional plots 
denoting the functional behavior of process parameters. 
Although it is developed primarily for the heat treating domain, 
it is also likely to provide useful estimations in other areas of 
Materials Science. In general, it targets domains with 
scientific processes, e.g., Mechanical Engineering, Physics, 
Chemistry and so forth. In such domains performing a 
laboratory experiment consumes significant time and 
resources, hence motivating computational estimation. 
 
 

4. Enhancements to AutoDomainMine 
 

4.1 Need for Enhancement  
In mining heat transfer curves with techniques such as 
clustering [9] the default measure for comparison is typically 
Euclidean distance [7]. However, using Euclidean distance for 
comparison often does not result in the desired outcome. See 
for example the case depicted in Fig. 7.  
 

 
 

Figure 7: Example of Inaccuracy in Clustering  
 
Euclidean distance is based on the absolute position of points 
in space. It is the “as-the-crow-flies” distance between the 
given objects [7]. Thus, if a data mining algorithm using 
Euclidean distance considers the two heat transfer curves 
shown in Fig. 7 as similar, relative to other curves, this is 
semantically inaccurate. The two curves depict distinctly 
different physical tendencies since one has a visible 



Leidenfrost point while the other does not. This is confirmed 
by domain experts [17].  
 
The problem is that the knowledge of various features on the 
curves and their relative importance may at best be available 
in a subjective form, but not as a metric. Though several 
distance metrics exist in the literature, it is often not known 
beforehand which of these work best in a given domain. This 
motivates the development of a technique to learn a distance 
metric that captures the semantic content of the heat transfer 
curves. This should enhance the clustering accuracy by 
addressing issues such as the domain-specific emphasis of 
features depicted in Fig 7. This is likely to enhance the 
AutoDomainMine estimation. 

 
4.2 Distance Metric Learning to Enhance Clustering  
We propose a technique called LearnMet [20] to learn a 
distance metric for graphical plots incorporating domain 
semantics. We now summarize this technique in the context of 
the heat treating domain. Details of LearnMet can be found in 
[20]. The input to LearnMet is a training set with correct 
clusters of heat transfer curves over a subset of the 
experimental data in the database. The training set is provided 
by domain experts.  
 
The five basic steps of LearnMet are [20]:  

(1) Guess the initial metric guided by domain knowledge.  
(2) Use that metric for clustering with an arbitrary but 

fixed clustering algorithm.  
(3) Evaluate the accuracy of the obtained clusters by 

comparing them with the correct clusters. Accuracy 
is measured as success rate, i.e., ratio of true positives 
plus true negatives over sum of true positives, true 
negatives, false, positives and false negatives [22].  

(4) Adjust the metric based on the error between the 
obtained and correct clusters. If error is below 
threshold or if the execution times out then terminate 
and go to step (5), else go to step (2). 

(5) Once terminated, output the metric giving error 
below threshold or minimum error so far, as the 
learned metric.   

These steps are depicted in the flowchart in Fig. 8.  
 

 
 

Figure 8: The LearnMet Technique 
 

4.3 Integration of Technique with AutoDomainMine 
LearnMet is integrated with the AutoDomainMine system to 
learn domain-specific distance metrics for clustering. In order 
to evaluate LearnMet as a part of AutoDomainMine, the 
following approach is used.  
 
The clusters obtained using the default Euclidean distance and 
those using the learned metrics are both sent to the same 
decision tree classifier such as ID3 or J4.8 [10]. The 
accuracies of the respective classifiers in predicting unseen 
data in the database are compared. Since the classifiers remain 
the same, the difference in prediction accuracy represents the 
difference in clustering accuracy. Thus it denotes the 
effectiveness of the learned distance metrics in clustering [20]. 
This is elaborated in the next section. 
 
 
5. User Evaluation 
 
5.1 Evaluation of the AutoDomainMine System 
The performance of the system built using the 
AutoDomainMine technique [19] is evaluated with respect to 
the targeted users. Thorough evaluation is conducted using 
experimental data in heat treating. The process of evaluation is 
as follows. 
 
Test sets of performed experiments used for evaluation are 
distinct from the training sets used for learning in 
AutoDomainMine. This is to evaluate whether a generic 
hypothesis has been learned from the existing experiments to 
serve as the basis for estimation in unperformed experiments. 
The opinion of the domain experts is taken into account during 
evaluation. Examples from the evaluation are presented here. 
 
In the example shown in Fig. 9, the user submits input 
conditions of a quenching experiment in order to have the 
system estimate the heat transfer coefficients. The estimation 
of heat transfer coefficient as a function of temperature, i.e., 
the heat transfer coefficient curve is shown in Fig. 10.  
      

 
 

Figure 9: Given Conditions, Estimate Heat Transfer Curve 
 



 
 

Figure 10: Estimated Heat Transfer Curve 
 

The estimated curve is compared with the heat transfer curve 
obtained in the laboratory experiment performed with the 
same input conditions. This actual data has been stored in the 
test set. On comparing the two curves, the domain experts 
conclude that this estimation is satisfactory.   
 
Note that AutoDomainMine estimates the heat transfer curve 
as a whole. This is a step ahead of QuenchMiner™ which only 
estimates ranges of heat transfer likely to be achieved in 
experiments, such as high, medium and low. Thus 
AutoDomainMine enhances decision support by providing 
more information with greater precision. 
 

 
 

Figure 11:  Given Heat Transfer Curve, Estimate Conditions  
 
In another example shown in Fig. 11, the user submits a given 
heat transfer curve representing a desired nature of heat 
transfer. The AutoDomainMine system is requested to 
estimate a set of conditions that would obtain such a heat 
transfer curve.  
 
The response of AutoDomainMine in terms of an estimated set 
of conditions to obtain the desired curve is shown in Fig 12. 
On comparing this with the set of conditions that yield such a 
heat transfer curve (as stored in the test set), it is found that the 
estimation given by AutoDomainMine is accurate. This is 
confirmed by domain experts [17].  

 
 

Figure 12: Estimated Conditions 
 
Likewise on evaluating the AutoDomainMine system with 
over 200 experiments, it is found that the estimation accuracy 
is approximately 75%. The response time of the system is on 
an average 2 seconds [19]. Thus accuracy and efficiency are 
both within acceptable limits as concluded by domain experts 
[17].  
 
On comparing the AutoDomainMine estimation with that 
provided by similarity search [7, 22] it is found that 
AutoDomainMine is more accurate and efficient [19]. 
Similarity search needs an average response time of 4 seconds 
and gives an accuracy of approximately 60%.  
 
AutoDomainMine is faster because it searches over decision 
trees and representatives as opposed to similarity search that 
searches the entire database of existing experiments. 
AutoDomainMine is also more accurate since it incorporates 
domain knowledge discovered from existing experimental 
results while performing the estimation.  
 
5.2 Evaluation of LearnMet with AutoDomainMine 
LearnMet [20] has been developed mainly for the 
AutoDomainMine system to learn domain-specific distance 
metrics for clustering. The learned distance metrics can thus 
be used as the notion of distance in clustering heat transfer 
curves. Hence LearnMet is evaluated by measuring the 
accuracy of the AutoDomainMine estimation with and without 
the metrics learned from LearnMet.  
 
The estimation accuracy obtained using different metrics for 
clustering in AutoDomainMine is shown in Fig. 13. Note that 
this denotes the accuracy of the decision tree classifier in 
estimating the clusters of unperformed experiments over test 
data.  This is measured using 4-fold cross validation [22]. The 
observations shown here depict a summary of the rigorous 
experimental evaluation of LearnMet with AutoDomainMine, 
 
The estimation obtained from clustering using the learned 
metrics DE1, DE2, EQU, RND1 and RND2 is compared with 
the estimation obtained from clustering using Euclidean 
distance (ED). The metrics DE1 and DE1 correspond to 



experiments conducted with initial metrics given by domain 
experts. EQU denotes the experiment with the initial metric 
selected by assigning equal weights to all components. RND1 
and RND2 denote the experiments with initial metrics 
obtained by assigning random weights to components.  The 
corresponding learned metrics are all used for clustering in 
AutoDomainMine and the resulting estimation accuracies are 
compared with each other.  
 
Another distance metric for performing the comparison is 

BPLFEuclidean DDDD ++=  which is referred to as the 
AutoDomainMine metric denoted as ADM [19, 20]. This 
metric is obtained by considering Euclidean distance over the 
curve as a whole, and in addition considering the critical 
distances corresponding to the Leidenfrost point and Boiling 
point. Equal weight is given to all these individual distance 
components in the AutoDomainMine metric.     
 

Estimaton Accuracy with Different Metrics used in Clustering

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

ED ADM DE1 DE2 EQU RND1 RND2

Average Estimaton
Accuracy

 
 

Figure 13: Estimation Accuracy in AutoDomainMine 
 
It is observed from Fig. 13 that the accuracy with each metric 
output from LearnMet is higher than that with Euclidean 
distance. Moreover, it is also noticed that the accuracies with 
the learned metrics are higher than the accuracy with the 
AutoDomainMine metric. This proves the effectiveness of the 
learned metrics in capturing domain semantics during 
clustering in AutoDomainMine,  
 
 
6. Related Work 
 
6.1 Mathematical Modeling  
In several scientific domains, mathematical modeling [14, 4] 
could possibly be used as estimation technique. This requires a 
precise representation of the concerned graphical plots in 
terms of numerical equations, and exact knowledge of how the 
inputs affect the outputs.  
 
However, precise numerical equations and / or variables in 
existing models are often not known with respect to heat 
treating data. Hence mathematical modeling is not a popular 
technique in estimating heat transfer curves. For example, it 
has been shown that the existing models do not adequately 
work for multiphase heat transfer with nucleate boiling [17].  

 
6.2 Naïve and Weighted Similarity Search 
One intuitive estimation approach is a naive similarity search 
over existing data [7]. The given input conditions of a user-
submitted experiment are compared with those of existing 
experiments to select the closest match as the number of 
matching conditions. However this poses the following 
problem. The non-matching condition(s) could be significant 
in the given domain. The resulting estimation could thus be 
inaccurate since this significance has not been incorporated. 
 
A weighted search [22] guided by basic domain knowledge 
could possibly be used to overcome this problem. The relative 
importance of the search criteria, i.e., input conditions are 
coded as weights into feature vectors. The closest match is the 
weighted sum of the matching conditions. However these 
weights are not likely to be known with respect to their impact 
on the graph. Domain experts may at best have a subjective 
notion about the relative importance of a few conditions 
[SMM18], which is not sufficient for a weighted similarity 
search. 
 
6.3 Case-based Reasoning Approaches  
Estimation can also be performed using Case Based 
Reasoning (CBR) [8]. In the heat treating domain, this 
involves comparing conditions to retrieve the closest matching 
experiment, reusing its heat transfer curve as a possible 
estimate, performing adaptation if needed, and retaining the 
adapted case for future use.  
 
However adaptation approaches in the literature [8, 13] are not 
feasible for us. For example, if the condition “agitation” in the 
new case has a higher value than in the retrieved case, then a 
domain-specific adaptation rule could be used to infer that 
high agitation implies high heat transfer coefficients. However, 
this is not sufficient to plot a heat transfer curve in the new 
case. Adaptation rules [8] are generally used when the case 
solution is categorical such as in medicine and law.      
  
 Case Based Adaptation [13] could possibly be applied here. 
In the example where agitation in the new case and retrieved 
case do not match, the case base could be searched to find 
another case that matches in terms of agitation. However this 
second retrieved case may not match another condition such as 
“Quenchant temperature”. The heat transfer curves of the two 
retrieved cases could then be used to build an average that 
forms the estimated graph in the new case.  However, building 
such an average requires prior knowledge of the relative 
importance of conditions and the significant features on heat 
transfer curves.  
 
Moreover, adaptation with any approach requires a 
computational expense for each estimation performed, which 
is inefficient [18]. CBR approaches without adaptation such as 
exemplar reasoning [1] and instance-based reasoning [15] if 
used in our context face the same problem as naïve and 
weighted similarity search respectively [18]. 
 
 



7. Conclusions and Ongoing Research    
 

       The AutoDomainMine approach has been proposed for 
computational estimation by integrating the data mining 
techniques of clustering and classification. This paper 
describes AutoDomainMine with specific reference to 
quenching heat treatment. AutoDomainMine discovers 
knowledge from results of existing heat treating experiments 
in order to predict the results of new experiments. 
AutoDomainMine is used to estimate the heat transfer curve 
that would be obtained in an experiment given its input 
conditions and vice versa.  

  
        The main application of AutoDomainMine is to enhance 

decision support in our earlier developed system 
QuenchMiner™. While QuenchMiner™ only estimates ranges 
of parameters given their input conditions, AutoDomainMine 
estimates the heat transfer curve, thus enhancing decision 
support. Thorough user evaluation has proved that the 
AutoDomainMine estimation is satisfactory for various 
applications in heat treating.  

 
       Enhancement to AutoDomainMine includes learning a 

domain-specific distance metric as the notion of similarity in 
clustering. This has also been rigorously evaluated and is 
found effective in improving clustering and hence estimation 
accuracy. Ongoing research includes designing (as opposed to 
selecting) domain-specific representatives for classification. 
This is likely to provide even better estimation.  
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