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Abstract 
 

In computational analysis in scientific domains, 
images are often compared based on their features, e.g., 
size, depth and other domain-specific aspects. Certain 
features may be more significant than others while 
comparing the images and drawing corresponding 
inferences for specific applications. Though domain 
experts may have subjective notions of similarity for 
comparison, they seldom have a distance function that 
ranks the image features based on their relative 
importance. We propose a method called FeaturesRank 
for learning such a distance function in order to capture 
the semantics of the images. We are given training 
samples with pairs of images and the extent of similarity 
identified for each pair. Using a guessed initial distance 
function, FeaturesRank clusters the given images in 
levels. It then adjusts the distance function based on the 
error between the clusters and training samples using 
heuristics proposed in this paper. The distance function 
that gives the lowest error is the output. This contains the 
features ranked in the order most appropriate the 
domain. FeaturesRank is evaluated with real image data 
from nanotechnology and bioinformatics. The results of 
our evaluation are presented in the paper.   
 
1. Introduction 
 
Managing scientific data presents challenging research 
issues [6, 11, 17, 19]. The results of scientific 
experiments are often depicted as three-dimensional 
images. In several applications, the similarity between the 
images depicts the similarity between the phenomena that 
led to them [4, 14]. This similarity is often identified by 
individual features in the images such as color, size, 
depth, domain-specific observations and so forth.  

Computational analysis of these images involves 
processes such as clustering [8], building cluster 
representatives [8], similarity search [9] and data 
visualization [18]. In such analysis, it is important to 
compare the images analogous to a domain expert. The 
output of the analysis helps to draw inferences about the 
corresponding phenomena [4, 14]. For example, consider 

the following application in the domain of 
nanotechnology [17]. Nanostructure images obtained as a 
result of phenomena such as etching [4] are clustered 
based on their similarity. A representative image is 
selected for each cluster such that it is closest to all 
images within the cluster. This representative image is 
then used to categorize the given phenomena, e.g., the 
nature of the etching. In order to achieve effective 
clustering and select a good cluster representative, it is 
essential to capture the semantics of the images. Certain 
features such as nanoparticle size and interparticle 
distance may be crucial while others such as color may 
not be. Thus it is important to incorporate such factors in 
defining image similarity.  

Morever, certain aspects in image comparison may be 
related to metadata about the images. For example, 
images taken with a scanning electron microscope (SEM) 
are different from those with a transmission electron 
microscope (TEM). An SEM scans images at a particular 
cross-section, while a TEM penetrates the object in 
capturing the image [4, 14]. The level of zooming also 
needs to be taken into account. Given all these features 
pertaining to image data and metadata, and their relative 
importance, automating image comparison becomes even 
more challenging. Domain experts may at best have 
subjective notions of similarity but not a distance function 
that incorporates such features and their relative 
importance. Hence there is a need to learn such a domain-
specific distance function.  

In this paper, we propose an algorithm called 
FeaturesRank that learns the relative importance of image 
features. The inputs to FeaturesRank are training samples 
with pairs of images provided by experts. For each pair, 
experts identify whether they consider its images to be 
different or similar and indicate the extent of similarity 
based on levels. They also identify features that are 
potentially applicable to the images. Based on this, 
FeaturesRank defines a preliminary distance function for 
the images as a weighted sum of distances between its 
features. It then uses an iterative approach for learning 
using a suitable clustering algorithm [8]. In each iteration, 
clusters are obtained over the given images hierarchically 
such that the number of levels of similarity in the clusters 



is equal to that in the training samples. A comparison is 
then made between pairs of images in the clusters and 
training samples. Adjustments are made to the weights of 
the features in the distance function based on the error in 
clustering. Suitable heuristics for error computation and 
weight adjustment are proposed in the paper. The distance 
function corresponding to minimal error is returned as the 
output. The weights of the features in this distance 
function give their relative importance. 

The FeaturesRank approach is evaluated with real data 
from two domains, nanotechnology and bioinformatics. 
We focus on similarity search using distinct test sets not 
used for training the technique. A target image is 
compared with images in the database. The database 
images are ranked in the order of their similarity with the 
target image based on the learned distance function. The 
effectiveness of the ranking is judged by domain experts. 
The details of our evaluation are described in the paper.  

The rest of this paper is as follows. Section 2 gives the 
background. Section 3 explains the FeaturesRank method. 
Section 4 presents the evaluation. Section 5 outlines 
related work. Section 6 gives the conclusions. 
 
2. Background  
      
2.1. Images from Nanotechnology 
 
Figure 1 depicts an example of an image from 
nanotechnology. It is a top view of carbon nanofibers on 
glass mircofiber [4] taken with a scanning electron 
microscope (SEM).  
     

 
 
Figure 1: Carbon Nanofibers on Glass Mircofiber (SEM) 
 
     While comparing images manually, experts observe 
certain features of the images, such as nanoparticle size, 
interparticle distance and nanoparticle height [17]. 
Nanoparticle size refers to the dimensions of each particle 
in the nanostructure. Inter-particle distance is the average 
distance between the particles as seen in a 2-dimensional 
space. Nanoparticle height indicates to what extent the 
particles project above the surface in a cross-section [4]. 
These are visual features of the images.  Also, domain 
experts take into account other factors such as the level of 
zooming and the nature of the cross-section (top-view, 
oblique view etc.). This forms image metadata. 

 
2.2. Images from Bioinformatics 
 
Figure 2 is an example of an image in bioinformatics.  
This shows the inner view of a Herb Leaf [14] taken with 
a transmission electron microscope (TEM). 
 

 
 

Figure 2: Herb Leaf (TEM) 
 
     In comparing such images, visual features such as 
pixel size and greyscale (or color) and metadata such as 
level of zooming and image source are applicable. 
Domain experts intuitively take these into account in 
comparing the images [14].       
     Thus, in order to automate image comparison for 
domain-specific computational analysis, it is useful to 
incorporate such features pertaining to visual data as well 
as metadata on images. This helps to simulate the 
reasoning of experts for effective image comparison.  
 
3. The FeaturesRank Method 
 
We propose a method called FeaturesRank that learns a 
distance function incorporating the relative importance of 
features in the images. Before we explain the details of 
the learning, the inputs to FeaturesRank are briefly 
described as follows. 

 
3.1. Inputs to FeaturesRank 
 
Experts provide correct training samples with n pairs of 
images made from 2n distinct images. Each image is 
identified by a unique ID. For each pair they indicate 
whether it is similar or different and if similar, they 
specify the level of similarity in training samples, LT(P) 
from among L total levels. This is based on the notion of 
correctness as per the domain. We explain this with an 
example. Consider that L = 3, i.e., we have 3 levels of 
similarity where 1 indicates the least similar and 3 
indicates the most similar. By default, 0 indicates 
dissimilar. Example 1 below shows 20 distinct images 
organized into 10 disjoint pairs of images P = (Ia, Ib) with 
the level of similarity identified for each pair P. As stated 
above, we denote this as LT(P), i.e., level of similarity of 
pair P in training samples. 

 



Example 1: Training Samples 
P1: (I1,I16), LT(P1) = 2 
P2: (I5,I14), LT(P2)  = 1 
P3: (I2,I3), LT(P3)  = 0 
P4: (I6,I18), LT(P4)  = 1 
P5: (I7,I9), LT(P5)  = 0 
P6: (I12,I19), LT(P6)  = 2 
P7: (I17,I20), LT(P7)  = 1 
P8: (I4,I11), LT(P8)  = 3 
P9: (I8,I10), LT(P9)  = 2 
P10: (I13,I15),  LT(P10) = 3 
 
In addition, other inputs given by experts are features 

applicable to images and their individual distance 
functions. For a given feature f, its distance function is 
defined as ∆f. For example, in nanotechnology, consider 
the feature “nanoparticle size”. The distance between 2 
images based on this feature is the absolute difference 
between the sizes of their particles. For images Ia and Ib 
this is given as: ∆f (Ia,Ib) = |fa – fb|. Likewise, individual 
distance functions are specified for all features.  

 
3.2. Definition of Distance Function 

 
Based on the given inputs, we now define the concept of 
a distance function for the images in order to proceed 
with the learning in FeaturesRank.  

Distance Function for Images: For images Ia and Ib 
distance ∆ (Ia,Ib) between them is calculated as a weighted 
sum of distances between their features, where the 
weights indicate the relative importance of the features. 
Thus the distance function ∆ is defined as:  

∑ =
∆=∆

F

f ff1
α where 

f = index of each feature 
F = total number of features 
αf = weight of feature f 
∆f = distance between the images based on feature f 

Having defined this distance function for images, we 
now proceed to learn the weights of the features. Note 
that, at the start we consider all applicable features. If a 
feature happens to be insignificant, its weight should 
finally be zero. This would be learned by FeaturesRank. 

 
3.3. Process of Learning 

 
The learning in FeaturesRank occurs as follows. Consider 
any suitable clustering algorithm [8]. The notion of 
distance in clustering is an initial distance function 

∑ =
∆=∆

F

f ff1
α  with features f = 1 to F given as inputs 

and their weights assigned randomly. Using this distance, 
clustering is performed over the 2n images in L levels, 
where L is the number of levels of similarity in the 
training samples (except the base level of zero).  In order 
to draw an analogy with the training samples, the 

clustering is performed with two clusters at each level. 
We consider levels with two clusters each because the 
training samples indicate whether the pairs of images are 
similar or different (analogous to being in the same or 
different clusters) up to a certain level. We explain this 
with reference to Example 1. 

 

 
 

Figure 3: Clusters for Images in Example 1 
 
Clustering would be performed in three levels here 

since there are three levels of similarity in the training 
samples. In the first level, the 20 images would be placed 
in two clusters. In the second level, each cluster would 
again be partitioned into two clusters. Thus we get four 
clusters at this level. In the third level, each of these four 
clusters would in turn be partitioned into two more 
clusters each, thus giving a total of eight clusters. An 
example of such obtained clusters is shown in Figure 3 
with reference to the images in Example 1.  

Note that the clustering is always performed such that 
the clusters at the next level are sub-clusters of those at 
the previous level. In other words, if a pair of images is in 
different clusters at a given level, it would remain in 
different clusters at all levels thereafter.   

Ideally the obtained clusters should match the given 
training samples in terms of similarity between pairs of 
images. Thus, if for example, a pair of images is in 
different clusters at the very first level, ideally its level of 
similarity should be zero in the samples. If not, then some 
adjustment must be made to the distance function. Before 
introducing the heuristics for adjustment, we need to 
explain the calculation of error between the obtained 
clusters and the training samples. In order to calculate the 
error we first define the level of similarity between a pair 
of images in the clusters. 

Level of Similarity for a Pair of Images in Clusters: 
For a pair of images P = (Ia, Ib), its level of similarity in 
the clusters denoted as LC(P) is equal to:  
0, if  Ia, Ib are in different clusters at level 1 
x, if Ia, Ib are in the same cluster up to level x where 1≥x  
and in different clusters at all levels y, xy >∀  



For example, with reference to Figure 3, the level of 
similarity of the pair of images I1 and I16 in the clusters 
LC(I1,I16) = 3, since they are in the same cluster up to the 
third level. Likewise, LC(I5, I14) = 1 since they are in the 
same cluster only up to the first level. For the pair I2 and 
I3, LC(I2,I3) = 0, since they are in different clusters at the 
very first level. Given this notion of similarity, we now 
define the concept of error in clustering as below.  

Error in Clustering: For a pair of images P = (Ia, Ib), 
if the level of similarity in clusters is not equal to the level 
of similarity in the training samples, i.e., 

),(),( baba IILTIILC ≠  then it is considered to be an error 
pair. The error in clustering is defined as the ratio of the 
number of error pairs over the total number of pairs. If n 
is the total number of pairs and E is the number of error 
pairs, then error denoted as Ф is calculated as Ф = E/n. 

Thus, with reference to Example 1, (I1,I16) is an error 
pair, since LC(I1,I16) = 3, while LT(I1,I16) = 2. Likewise, 
out of the10 pairs, 6 are error pairs. Thus, error Ф = 6/10 
= 0.6 or 60 %. 

Ideally, the error should be zero since the clusters 
should match the training samples perfectly. However, a 
perfect match may not always occur. Hence in practice an 
error threshold is defined as follows.  

Error Threshold: The error threshold τ is defined as 
the fraction of the total number of pairs allowed to be 
error pairs for the clustering to be considered correct. 
Thus, if τ≤Φ  then the clustering is correct. 

With reference to Example 1, consider that the error 
threshold is given as τ = 0.1, i.e., 10% error is allowed. 
Since the error in this example is calculated as Ф = 0.6, 
we get Ф > τ, i.e., the error is above the given threshold. 
Thus the clustering is not correct in this example.  

In order to rectify the error, adjustments need to be 
made to the distance function used for clustering. The 
heuristic for adjustment is explained below.  

Consider that the level of similarity of a particular 
error pair ),( ba II  in the clusters is greater than that in the 
training samples, i.e., ),(),( baba IILTIILC > . This 
implies that the images in the pair ),( ba II  have been 
considered closer to each other in the clusters obtained 
with our distance function than they should be in reality 
(as indicated by the training samples). An example of 
such a pair is (I1,I16). In order to rectify this, the images 
need to be pushed further apart from each other. We 
propose to do this by increasing the weights of one or 
more features in the distance function used for clustering.  

We define two concepts Step and Blame, analogous to 
step size and blame assignment in machine learning.  

Definition of Step: The step S(Ia, Ib) due to a pair P = 
(Ia, Ib) is the difference between the correct level of 
similarity of that pair in the training samples and its 
obtained level of similarity in the clusters. This is 
calculated as:  

S ),( ba II  = | ),(),( baba IILCIILT − |. 
Definition of Blame: The blame Bf (Ia, Ib) due to a 

feature f and pair P = (Ia, Ib) is the ratio of the distance 
between the images of pair P due to feature f over the 
total distance between the images. This is calculated as:  

Bf ),( ba II  = ),(/),( babaf IIII ∆∆ .   

Given these two definitions, we propose that if the 
weight of the given feature is αf,, its new weight should be 
αf  + S ),( ba II ×  Bf ),( ba II  in order to rectify the error 
caused by the given feature in the given pair.  

Conversely consider an error pair where we have 
),(),( baba IILTIILC < . Applying the reverse argument, 

the new weight of each feature should be αf - S ),( ba II ×  
Bf ),( ba II due to such a pair.  

Thus, in order to take into account the effect of all 
error pairs, we propose a heuristic for adjustment called 
the Feature Weight Heuristic. This is defined below. 

Feature Weight Heuristic: For each error pair, the 
new weight of each feature is given as:  
αf + S ),( ba II ×Bf ),( ba II  if ),(),( baba IILTIILC >  and  
αf  - S ),( ba II ×Bf ),( ba II  if ),(),( baba IILTIILC <  where 
Bf ),( ba II = ),(/),( babaf IIII ∆∆  and 

S ),( ba II  = | ),(),( baba IILCIILT − | 
     The justification of the feature weight heuristic is as 
follows. This heuristic embodies in spirit the reasoning of 
the experts [4, 14]. They reason in terms of levels of 
similarity in making image comparisons instead of having 
precise numbers for feature weights at the top of their 
mind. Therefore we enable them to provide the training 
data to our method accordingly. Hence the adjustment in 
the heuristic is made by scaling up or down the weights 
based on the difference between the actual level of 
similarity in the training samples and the obtained level of 
similarity in the clusters. The step denotes the difference 
between the levels of similarity. The blame of each 
feature helps to calculate the extent to which the given 
feature is responsible for the difference. The subjective 
reasoning of the experts is thus mapped into an objective 
measure for feature weight adjustment. 
     Likewise, after considering the effect of each error 
pair using this heuristic, the adjusted distance function 
thus obtained is likely to rectify the error in clustering. 
This adjusted distance function is then used for another 
iteration of clustering.  
      The process of clustering, calculating error and 
making adjustments is repeated until the error is below a 
given threshold or the maximum number of allowable 
iterations is reached. The distance function that 
corresponds to the lowest error is then returned as the 
output of FeaturesRank. This contains the features ranked 
in the order appropriate in the respective domain. 
 



3.4. The FeaturesRank Algorithm 
 
Based on the above discussion, the FeaturesRank 
algorithm we propose is outlined below.  

 

Algorithm: FeaturesRank 
• Given:  

o Training samples with n pairs of 2n distinct objects 
o Total number of similarity levels L  
o Level of similarity in training samples LT(P) identified 

for each pair P 
o F features f1 through fF applicable to objects 
o Error threshold τ 

• Learn: Distance function ∆ with relative importance of features 
• Process: 

1. Define ∑ =
∆=∆

F

f ff1
α where αf is weight of  feature  f 

2. Consider any clustering algorithm 
3. Let number of clusters = 2 throughout,, initialize number of 

error pairs E = 0 
a. For i = 1 to L  

• Cluster 2n objects in L levels using distance  

∑ =
∆=∆

F

f ff1
α   

b. For P= 1 to n pairs in training samples 
c. Calculate LC(P) in clusters 
d. If )()( PLTPLC ≠ then E = E + 1 
e. Calculate error Ф = E/n 
f. If τ≤Φ or  max iterations reached go to step 4 
g. Apply Feature Weight Heuristic to get new 

f∆ and go to 3(a) 

4. Return current ∑ =
∆=∆

F

f ff1
α as learned distance function 

 
    The Feature Weight Heuristic proposed in the 
FeaturesRank algorithm is not guaranteed to provide 
convergence in theory. However, in practice, we have 
obtained consistent convergence to error below threshold. 
This is elaborated in the section on evaluation. 
 
4. Experimental Evaluation 
 
The FeaturesRank approach has been evaluated with real 
data from nanotechnology and bioinformatics. A 
summary of our evaluation is presented below. 
 
4.1. Performance Evaluation over Training Data 
 
Training samples in the form of pairs of images are 
provided to us by domain experts from nanotechnology 
and bioinformatics respectively. We have 30 pairs of 
images from nanotechnology and 20 pairs from 
bioinformatics. Levels of similarity in training samples 
are identified for all the pairs of images. For the given 
nanotechnology data, similarity levels are identified from 
among three total levels (i.e., L=3). In bioinformatics, 
there are two total levels (i.e., L=2). This is in addition to 
the base level of zero implying dissimilar in both the 
domains. Features of these images are also provided as 

applicable. Initial weights of these features are either 
randomly assigned or equal weights are used. We conduct 
experiments with both equal and random weights. We 
consider error threshold between τ = 0.1 and τ = 0.05. 
The maximum number of iterations is set to 1000. 
Clustering seeds are altered for randomization. 
      For each data set, we show two combinations of 
random initial weights and one combination of equal 
initial weights. We depict the results for the two extremes 
of τ = 0.1 and τ = 0.05. We record the training behavior 
in terms of error versus iterations for each experiment.  
 
4.1.1. Nanotechnology Data. Figures 4 through 6 show 
the training behavior for the data set from 
nanotechnology.  In these charts, the thick line shows the 
results with 10% error threshold and the thin line 
corresponds to the experiments with 5% error threshold.  

 
Figure 4: Nanotechnology Data, Random Weights 

 

 
Figure 5: Nanotechnology Data, Equal Weights 

 
Figure 6: Nanotechnology Data, Another Combination of 

Random Weights 



 
    It is observed that convergence to error below 
threshold occurs for all the experiments in less than 300 
iterations. The experiments with error threshold of 5% 
take longer to converge than those with 10% threshold. 
We do not observe a huge difference in the behavior of 
experiments with random and equal initial weights in 
terms of number of iterations for convergence.  
 
4.1.2. Bioinformatics Data. The training behavior for the 
data set from bioinformatics is depicted in Figures 7 
through 9. In these charts also, the thick and thin lines 
depict the experiments with error thresholds of 10% and 
5% respectively.  

 
Figure 7: Bioinformatics Data, Random Weights 

 

 
Figure 8: Bioinformatics Data, Equal Weights 

 

 
Figure 9: Bioinformatics Data, Another Combination of 

Random Weights 

 
     It is seen from these charts that the error in the 
bioinformatics data set fluctuates more than in the 
nanotechnology data set. Possible reasons for this could 
be that fewer images were used as training samples for 
learning and fewer levels of similarity were used. Other 
observations were similar to those in the nanotechnology 
data sets.  
    In both data sets, convergence to error below threshold 
occurs for all the experiments we have conducted so far. 
Many are not shown here due to space limitations. 
 
4.2. User Evaluation over Test Data 
 
We conduct user evaluation in the context of similarity 
search for both the nanotechnology and bioinformatics 
data sets. The purpose of this evaluation is to assess the 
effectiveness of the distance function output by 
FeaturesRank that incorporates the relative importance of 
features in the image data. We use test data distinct from 
that used for training the technique. The goal is to rank 
images in the test data set in the order of their similarity 
with a target image. The results of the ranking are verified 
by domain experts. Based on the outcome of our 
experiments with different target images, experts provide 
a subjective assessment of the ranked results. We present 
a few excerpts from our evaluation.  
 
4.2.1. Similarity Search with Nanotechnology Data.  
Figure 8 shows an example of a target image from the 
field of nanotechnology. Using our learned distance 
function from FeaturesRank, this is compared with all the 
images in the test data set. The top 4 images that are most 
similar to the target image are returned, ranked in their 
order of similarity as shown in Figure 9 
 

 
Figure 8: Target Image in Nanotechnology Data 

 
 

 
Figure 9: Top 4 matches in Nanotechnology Data 

 



     The experts are asked to assess the effectiveness of the 
ranking. They conclude that the top 4 ranked answers in 
this case are accurate. Likewise, on conducting several 
experiments with test data in nanotechnology, the experts 
indicate that the overall performance is good. 
 
4.2.2. Similarity Search with Bioinformatics Data. 
Figure 10 illustrates a sample target image from 
bioinformatics. Using the output of FeaturesRank, this is 
compared with the images in the given test data set to find 
the top 4 closest matches ranked in their order of 
similarity. The results of the ranking appear in Figure 11.  
 

 
Figure 10: Target Image in Bioinformatics Data 

 
      

 
Figure 11: Top 4 matches in Bioinformatics Data 

 
    This ranking is considered to be effective as verified by 
the domain experts. Based on the outcomes of all the 
experiments conducted with bioinformatics data, we find 
that the experts are satisfied with the ranked results for 
similarity search in image retrieval. 
 
5. Related Work 
 
   The FastMap algorithm [5] maps objects in multimedia 
databases to points in a user-defined k-dimensional space 
preserving similarities in the original objects. This aids 
efficient retrieval with spatial access methods, 
visualization and data mining. In [12], feature-based and 
correlation based methods are combined to derive a 
trainable similarity measure to classify images. In [1], 
probabilistic measures are proposed for similarity search 
over images. These are robust to normalization and 
outperform geometric measures. One way in which our 
work differs from these is that we take into account 
domain-specific metadata on the images in addition to 
visual features. Moreover, our work is orthogonal to the 
literature, in being able to combine various individual 
distance functions corresponding to different aspects of 
images in order to learn their relative importance. 

     Keim et al. [10] overview various distance types 
applicable to similarity search in multimedia databases. 
However no single distance function combining such 
distance types is proposed.  Hinneburg et al. [7] propose a 
learning method to find the relative importance of 
dimensions for n-dimensional objects. Their goal is to 
learn the minimal number of dimensions that give the 
same result of a query in the original and reduced space. 
They do not however semantically rank the dimensions 
based on the respective features captured.  
      Our earlier work [16] involves learning distance 
metrics for graphs plotting scientific functions. However, 
the assumption is that true clusters of such graphs are 
provided as a training set. It is however not always 
feasible for experts to provide such large volumes of 
training data in the form of clusters. Moreover the issues 
is comparing images are even more challenging than 
those with graphs. Also in dealing with the images here, 
ranking them based on levels of similarity is meaningful 
in the context of the given domains.  
      In [3], Das et al. perform automated selection and 
ranking of attributes in query results. They propose a 
hybrid Split-Plane approach that combines top attributes 
from variants of attribute selection approaches. In [2], 
Chaudhuri et al. rank the results of database queries based 
on probabilistic information retrieval models. They 
propose a ranking function that depends on the global 
importance of unspecified attribute values as well as the 
strengths of correlations between specified and 
unspecified attribute values. The work in ranking 
problems such as these is more of a post-processing 
nature in terms of presenting results to users. Our work 
deals primarily with data preprocessing issues that 
involve learning similarity measures in order to proceed 
with the analysis of the data. Moreover we focus on 
image comparison and its targeted applications.       
     There has been work in capturing the subjective 
reasoning of users to learn objective measures for query 
processing, image retrieval and graphical user interface 
design. The MindReader system [9] guesses the distance 
function in the mind of the users based on combining 
several examples given by users and their relative 
importance. In [13], they propose a human computer 
interaction approach to perform content based retrieval of 
images. The users’ queries and subjective perceptions are 
used to learn feature weights based on relevance 
feedback. In [15], suitable cluster representatives are 
designed for targeted applications based on the respective 
users’ subjective interests learned through an objective 
encoding. The proposed encoding is analogous through 
the Minimum Description Length principle. Our 
FeaturesRank approach falls in the same general category 
of such techniques. Heuristics in FeaturesRank are 
defined as appropriate for the given problem. 



     Wavelets [8, 19] are often used for image processing, 
in order to compare and rank images. However, the 
wavelet coefficients need to be computed each time the 
image comparison is made which is computationally 
expensive. FeaturesRank on the other incurs a one-time 
cost of learning the relative importance of the features. 
The learned distance function can then be used for image 
comparison without further expense. 
 
6. Conclusions 
 
This paper describes our FeaturesRank approach to learn 
a distance function incorporating the relative importance 
of features in images. The learned distance function is 
assessed in the context of ranking images in similarity 
search. Real data from the domains of nanotechnology 
and bioinformatics has been used for learning and 
evaluation. User studies conducted with the help of 
domain experts confirm that the output of FeaturesRank is 
effective as per their needs. Ongoing work involves 
conducting formal user surveys over larger volumes of 
data; evaluating FeaturesRank in other applications; and 
performing comparative studies with state-of-the-art.  
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