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Abstract. Scientific datasets often consist of complex data types such as images. 
Mining such data presents interesting issues related to semantics. In this paper, we 
explore the research issues in mining data from the field of nanotechnology. More 
specifically, we focus on a problem that relates to image comparison of material 
nanostructures. A significant challenge here relates to the notion of similarity between 
the images. Features such as size and height of nano-particles and inter-particle distance 
are important in image similarity as conveyed by domain experts. However, there are no 
precise notions of similarity defined apriori. Hence there is a need for learning 
similarity measures. In this paper, we describe our proposed approach to learn similarity 
measures for graphical data. We discuss this with reference to nanostructure images. 
Other challenges in image comparison are also outlined. The use of this research is 
discussed with respect to targeted applications. 
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1   Introduction 

In recent years there has been much interest mining scientific datasets [3, 5, 8, 11, 
15]. This presents several challenges pertaining to the complexity of the data types 
and the semantics of the domain. Scientific data often consists of images which have 
to be interpreted with reference to context. Discovering knowledge from such data 
presents issues related notions of similarity, interestingness measures and 
visualization of the data mining results.  

    In this paper, we explore such issues in the context of nanotechnology, a popular 
area in scientific databases today. The field of nanotechnology relates to the design, 
characterization, production and application of structures, devices and systems by 
controlling shape, size, structure and chemistry of materials at the nanoscale level. It 
deals with the understanding and control of matter at dimensions of roughly 1 to 100 
nanometers, where unique phenomena enable novel applications [13]. 



Nanotechnology involves a confluence of several disciplines such as physics, 
chemistry, biology and materials science. 

     Data from nanotechnology, as in the case of any scientific domain, is of various 
types such as numbers, plain text, graphs and images. In this paper we focus on 
images depicting nanostructures of materials. An interesting problem is the 
comparison of such images in computational analysis. The inferences drawn from 
comparison are useful in real-world applications such as materials science, 
biomedicine and tissue engineering [2]. To enable effective comparison, it is essential 
to preserve the semantics of the images. Accordingly, it is important to define notions 
of similarity and interestingness measures for comparison with respect to the domain. 
Moreover, visualization of image comparison results taking into account user interests 
is also an issue.  

     In this paper, we focus on one issue, namely, the notion of similarity or distance 
between the images. Domain experts are able to identify some features crucial in 
image comparison. For example, the size of the nano-particles within the image, the 
distance between these nano-particles and the height of the nano-particles in the 
cross-section of the image are considered to be significant. However, the experts have 
only subjective notions of similarity, not a precise measure. Hence there is need to 
learn similarity measures for such images. We describe our proposed approach called 
LearnMet [14] that has been used in a computational estimation system [15] to learn 
distance metrics for graphical data. We discuss the issues in enhancing this approach 
for images. We also discuss some of the other challenges in image comparison. 

     The rest of this paper is organized as follows. Section 2 gives a background of the 
domain and the motivation for the given problem. Section 3 describes in detail the 
problem of comparing nanostructure images along with its associated challenges. 
Section 4 discusses one particular challenge related to the notion of similarity 
between the images and a potential method of addressing it. Section 5 summarizes 
related work. Section 6 states the conclusions.  

2   Background and Motivation 

The investigation of cell-substrate interactions plays an important role in biomedical 
and tissue engineering research efforts.  Understanding how cells interact with 
substrates will lead to the ability to optimize substrates for specific biomedical 
applications [2].  Studies have shown that microscale topography influences cells to 
assume the shape of underlying patterns and form cytoskeletons oriented to the 
patterns [4].  There are few studies which have analyzed cell interactions with 
nanostructured substrates [17].   

    In order to extensively analyze cell-substrate interactions on the nanoscale, 
simple, inexpensive, and scalable nanofabrication methods which can accommodate a 
wide variety of materials must be developed.  It is necessary to make this step from 
the microscale to the nanoscale. Based upon the need for more thorough nanoscale 
research there is development of simple, inexpensive, and scalable nanofabrication 



methods which accommodate different types of materials. Bone cells are being 
cultured on the nanostructures and the cell adhesion, proliferation, differentiation, and 
mineralization are being monitored using standard cell culture arrays and 
electrochemical impedance spectroscopy [2].   

     The results of this research will facilitate the fabrication of biological 
nanostructures and contribute to the continuing efforts to understand how cells 
function in the presence of synthetic substrates for biomedical and tissue engineering 
applications [2, 4]. 

    An important step in this research is the comparison between images depicting 
the cell responds to various nanostructures used in the given applications. This 
comparison enables drawing inferences about the impact of the nanostructure on the 
cells. For example, image comparison at different stages of cell culturing is very 
important to understand the interaction of the cells with nanostructures. Comparison 
of different nanostructures at the same stage but obtained under different cell 
culturing conditions helps to determine how the inter-cellular interactions are affected 
with the existence of various nanostructures.  

The research has potential use in targeted applications. Some of these applications 
include investigating the adhesion between cells and substrates in biomedical data, 
studying the alignment of cells and the differentiation between cells. This caters to the 
broader goals of developing materials for implants in the human body and helping the 
human skin to heal. 

 It is desirable to automate the comparison between the nanostructure images for 
computational analysis. The comparison can be automated using techniques such as 
clustering [9] and similarity search [8]. However, in order to achieve effective 
comparison, it is essential to capture the semantics of the images. In other words, it is 
important to make the comparisons analogous to a domain expert.  

The problem of image comparison facing the nanoscience community thus opens 
potential avenues for data mining research. This problem is discussed in the paper.  

3   Comparison of Nanostructure Images 

3.1 Goals of Comparison 
 
A nanostructure is a structure with arrangement of its parts in the nanometre scale. 
Nanostructures of materials are observed to study their properties [13]. Comparing 
nanostructure images enables us to determine whether the nanostructure play a crucial 
role in the cells. It helps to answer questions such as: 

• What is the difference in nanostructure at various locations of a given 
sample? 

• How does the nanostructure evolve at different stages of a physical / 
chemical / biochemical process? 

• To what extent does processing under different conditions affect the cell-
nanostructure interaction at the same stage of a process, such as cell 
culturing? 



This is explained with reference to the figures below depicting images of 
nanostructures taken with a Scanning Electron Microscope (SEM).     

      Figure 1 shows a top view of a silicon nanopillar array [2]. Figure 2 is a top 
view of the same specimen at a different location and more zoomed in. Figure 3 is a 
top view of a nanopore array etched into silicon [2].  

      From these images it is observed that Figures 1 and 2 depict different 
nanostructures due to the difference in location and in the level of zooming. Figures 1 
and 3 on the other hand show different nanostructures based on the conditions of the 
physical process used to obtain them. 

 

 
 

Figure 1: Top view of Si nanopillar array 

 

 
 

Figure 2: Top view of Si nanopillar array at a different location of the given sample 
and more zoomed in 

 



 
 

Figure 3: Top view of nanopore array etched into Si 

3.2 Issues in Comparison 

In order to make nanostructure comparisons, domain experts typically observe certain 
features of the images, such as: 

• Nanoparticle size: This refers to the dimensions of each individual particle in 
the nanostructure.  

• Inter-particle distance: This is the average distance between the particles as 
seen in a 2-dimensional space. 

• Nanoparticle height: This indicates to what extent the particles project above 
the surface in a cross-section and is recorded as additional data.     

    When experts manually make such comparisons, these are the subjective notions 
of similarity. The greater the similarity between these individual features, the greater 
is the similarity between the nanostructure images as a whole. Thus if two images 
have the same nanoparticle size, the same inter-particle distance and the same 
nanoparticle height, then they would be considered similar during visual inspection by 
domain experts. Also, the experts would manually take into account the effect of 
aspects such as the level of zooming and the nature of the cross-section (top-view, 
oblique view etc.) in making such comparisons. 

    Thus in order to automate image comparison for computational analysis, it is 
useful to incorporate the reasoning of the experts. However, it is to be noted that this 
notion of similarity is subjective which is acceptable for visual inspection. In 
computational analysis, there is a need for objective similarity measures in order to 
compare these images using processes such as clustering [9]. This motivates the need 
for learning such domain-specific similarity measures for images. 

     Another important issue in image comparison is to define interestingness 
measures. Some knowledge discovered from the comparison can be obvious with 
respect to the domain. Other knowledge may be less obvious but may not provide any 
useful information. Thus, based on such criteria, it is essential to define what is 



interesting to targeted users. These measures again need to be objective so as to 
facilitate computational analysis. For example, in data mining techniques such as 
association rules, common interestingness measures are rule confidence and rule 
support [6]. Likewise, there is a need to define interestingness measures in image 
comparison.  

     Having performed analysis by data mining techniques such as similarity search 
[8] and clustering [9], it is desirable to effectively visualize the data mining results. 
For instance, users may be interested in observing how a particular feature such as 
nanoparticle size varies from one specimen to another in evolutions of a physical 
process such as etching [2].  

     One possible way to address this would be to model each feature as an attribute 
the content of the feature as the value of that attribute. Thus, for example, 
“nanoparticle size” could be an attribute and “200 nanometers” could be its value.  

     Tools such as XMDV [16] incorporating techniques such as parallel co-ordinate 
plots and star-glyphs plots for visualizing multivariate data could then be used. Figure 
4 shows an example of a star-glyphs plot for graphical data. Each vertex represents an 
attribute and the distance from the center of the star represents its value. The number 
of attributes and their combinations can be customized according to user preferences. 
Clusters and similarities can be visualized by comparing their shapes and sizes [16].   

 

 
Figure 4: Example of Star Glyphs Plot 

 
     However, such visualization for images poses issues such as feature selection, 

data post-processing and adaptation of existing techniques to enable the visualization. 
Addressing these poses challenges. 

     Hence, in general the following issues can be outlined in comparison of 
nanostructure images.  

• Learning a notion of similarity for the nanostructures 
• Defining interestingness measures for comparison between nanostructures 
• Visualizing the results of comparison based on user interests 



     We elaborate on one of these issues, namely, the notion of similarity between 
the nanostructure images. 

4   Notion of Similarity 

The problem of similarity measures for complex data types has been approached in 
several ways [1, 7, 8, 12, 14, 19]. 
     Our earlier work, LearnMet [14] learns domain-specific distance metrics for 
graphical data. More specifically, we deal with 2-dimensional graphical plots of 
scientific functions. These graphs plot a dependent versus an independent variable 
depicting the behavior of process parameters. The graphs have semantics associated 
with them related to features such as the absolute position of points, statistical 
observations and critical regions. LearnMet learns distance metrics to capture the 
semantics of these graphs taking into account such features. We briefly describe the 
LearnMet approach to learn distance metrics for graphical data and discuss this in the 
context of images.  
 
4.1 The LearnMet Approach for Graphical Data 
 
In the LearnMet approach experts provide actual clusters depicting the notion of 
correctness in the domain. A LearnMet distance metric is defined as a weighted sun of 
components such as position-based, statistical or critical distances [14].  

     

 
 

Figure 5: The LearnMet Approach 
 
     In the learning process, predicted clusters obtained with a guessed initial LearnMet 
metric are iteratively compared with the actual clusters. In each iteration, the metric is 
refined until the error between predicted and actual clusters is minimal or below 
threshold. The metric corresponding to the lowest error is the learned metric. This 
approach is illustrated in the flowchart in Figure 5 and discussed in detail in [14]. 
  



 
4.1.1 Evaluation of LearnMet  
     The LearnMet approach has been evaluated in the domain of Heat Treating of 
Materials that motivated its development. A training set of 300 pairs of graphs in Heat 
Treating is obtained from correct clusters of 25 graphs given by experts. A distinct 
test set of 300 pairs of graphs is derived from 25 graphs given by experts. Experts 
give an error threshold of 10%, i.e., 0.1 for estimation. We use the same threshold for 
clustering. Initial components in the metric are given by experts. Two distinct 
assignments of initial weights are given by two different experts [14]. The 
corresponding two metrics are denoted by DE1 and DE2 respectively. A third initial 
metric EQU is obtained by assigning equal weights to all components. Several 
experiments are run by assigning random weights to components in the initial metric 
[14]. We present two experiments with randomly generated metrics called RND1 and 
RND2. The initial metrics used in LearnMet experiments are shown in Figure 6. 

 

 
 

Figure 6: Initial Metrics in LearnMet Experiments 
 

The learned metric in each experiment is used to cluster graphs in the test set. 
These clusters are compared with correct clusters over the test set. Euclidean distance 
(ED) is also used to cluster the graphs and the clusters are compared with the correct 
clusters. The observations for all the experiments are shown in Figure 8. This figure 
depicts the accuracy for each metric over the test set. Clustering accuracies of the 
learned metrics are higher. 

 

 
 

Figure 7: Test Set Observations 
 



     The basic idea in LearnMet can be applied to learn similarity measures for images. 
However, there are several issues involved here as discussed in the next subsection. 

4.2 Learning Similarity Measures for Images 

A three-dimensional nanostructure image is more complex than a 2-dimensional 
graphical plot. The semantics associated with the images is of a different nature. 
Some of the features applicable to images can be explicitly identified such as 
nanoparticle size, interparticle distance and nanoparticle height. However, some 
aspects are more subtle such as the level of zooming involved in producing the 
images and the nature of the cross-section for the nanostructure sample. Even among 
the features identified, the relative importance is not defined apriori. Moreover, it is 
not always feasible for domain experts to provide actual clusters of images depicting 
the notion of correctness.  
     Given these issues, it is non-trivial to directly apply the LearnMet approach for 
nanostructure images. Considerable enhancement is needed to learn a notion of 
similarity for images. 
     Thus, in general it is required that the learning of similarity measures for 
nanostructure images be done under the following conditions: 

• Some features of the image are explicitly defined while others are subtle 
• Relative importance of the features is not known apriori 
• Actual clusters of images are not provided by domain experts 

     We propose to address this learning using an approach that involves minimizing 
the intra-cluster distance and maximizing the inter-cluster distance for each cluster of 
images. The goal is to learn a similarity measure that achieves this.  
     The minimum description length principle [10] that minimizes the sum of 
encoding a theory and examples using the theory is likely to be useful here. The 
theory in our context could be a cluster representative while the examples could be all 
the other images in the cluster. This approach involves several challenges such as 
defining heuristics for iteratively adjusting the similarity measure until the intra-
cluster distance is minimal.  
     Thus, the learning of similarity measures for nanostructure images is proposed to 
be done in an iterative manner. This forms a topic of our ongoing research. 

5   Related Work 

Several similarity measures exist in the literature such as Euclidean and Manhattan 
distances [6], Tri-plot-based measures [12], Edit distances [1] and order-based 
measures [6, 8, 18]. However, some of them do not apply in the context of the given 
problem while others alone are not sufficient to define similarity. 
     In [7] they propose a distance learning method to find the relative importance of 
dimensions for n-dimensional objects. However, their focus is on dimensionality 
reduction and not on semantics. In [19] they learn which type of position-based 
distance is applicable for the given data starting from the formula of Mahalanobis 



distance. However they do not deal with other distance types concerning images and 
semantics. In [8] they overview various distance types for similarity search over 
multimedia databases. However no similarity measure encompassing several types is 
proposed. 
     Interestingness measures have been defined in the literature for data mining 
techniques such as association analysis, clustering and classification [6, 9, 18]. 
However, there is often a need for interestingness measures to be domain-specific and 
need to cater to interests of various users. Hence we need to define such measures in 
the context of our problem.  
     The XMDV tool [16] incorporates techniques such as parallel co-ordinates plots 
and star-glyphs plots for visualization of multivariate data. However, the adaptation of 
this approach to the given problem involves several issues.  
 

6   Conclusions 

This paper describes the research issues in mining nanostructure images. The goal is 
to compare the nanostructures to analyze material properties. The issues in mining 
relate to the notion of similarity between the images, the interestingness measures in 
comparison and the visualization of the mining results. This research benefits the 
nanoscience community. The broader goal is to study properties of materials at the 
nanoscale level in order to solve problems in the fields of materials science, 
biomedicine and tissue engineering.  
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