An Applet-Based Anonymous 

Distributed Computing System
David Finkel, Craig E. Wills, Michael J. Ciaraldi,

Kevin Amorin, Adam Covati, and Michael Lee

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609 USA

e-mail: dfinkel@cs.wpi.edu

Abstract

Anonymous distributed  computing systems consist of potentially millions of heterogeneous processing nodes connected by the global Internet. These nodes can be administered by thousands of organizations and individuals, with no direct knowledge of each other.   This work defines anonymous distributed computing systems in general then focuses on  the specifics of an applet-based  approach for large-scale distributed computing on the Internet.  A user wishing to participate in a computation connects to a Distribution Server, which provides information about available computations, and then connects to a Computation Server with a computation to distribute.  A Java class is downloaded, which communicates with the Computation Server to obtain data, performs the computation, and returns the result.  Since any computer on the Internet can participate in these computations, potentially a large number of computers can participate in a single computation.

Keywords

Distributed Computing, WWW, Java Applets

1. Anonymous Distributed Computing Systems

A number of approaches have traditionally been used in research and practice to build distributed computing environments using a set of networked machines.  These approaches include:

· Autonomous systems where machines run standalone, but users can explicitly access services on other machines, such as remote login or file transfer.

· Distributed operating systems, which hide the details of the network and the existence of multiple machines from the user, providing the abstraction of a single virtual computer system.  All of the machines in the system are under the control of a single administrative domain.

· Network file systems, the most common distributed computing environment, in which mostly autonomous machines share file systems located on remote file servers.   Here, too, a single administrative domain controls the machines.

Against the backdrop of these traditional approaches has arisen a new approach that seeks to solve distributed computing problems on a scale not possible with previous approaches.  We refer to this approach as anonymous distributed computing (ADC) and these systems as anonymous distributed computing systems (ADCSs) [10].

An ADCS consists of three types of nodes: distributor nodes for distributing pieces of a distributed computation, client nodes for executing these pieces and reporting results back to a distributor node, and portal nodes for serving as central sites where client nodes can be directed to distributor nodes.  In general, these three types of nodes are not under the same administrative control. 

ADCSs have several distinguishing characteristics:

· They consist of potentially millions of client nodes, each anonymously providing a piece of a distributed computation.

· The client nodes can vary widely in processing speed, memory capacity, and architecture.

· Each client node may be under the control of a different administrative domain.

· Client nodes may be unaware of each other.

· Client nodes may not always be available in the ADCS.

· Communication between client and distributor nodes is through the global Internet.  This communication may be unreliable, intermittent, and at varying bandwidth.

· Client nodes may crash or unexpectedly withdraw from the ACDS at any time.

· A client node might participate in several ADCSs.

· Client nodes in an ADCS may participate voluntarily or they might receive payment, perhaps dependent on the quantity or quality of their computations.

Two general approaches are currently being used for anonymous distributed computing systems.  In the first approach a client node first downloads an executable program from a portal node.  When the client node wishes to actively participate in the distributed computation, it contacts a distributor node for specific data to use for processing and reports its results back to the distributor.  At this point, the client node may request additional data from the distributor for execution of another computation piece.  This approach is used by  three ADCSs – The SETI@home project [8], distributed.net [4] and the original distriblets project [2, 5].  The SETI@home project uses a distributor node to coordinate the work of client nodes to download radio telescope logs to search for evidence of extra-terrestrial intelligent life.  Client nodes execute the program as a screen-saver so it is run when each node is otherwise idle.  The distributed.net project is focused on solving DES encryption problems by using client nodes to test possible encryption keys. Client nodes execute the program as a low-priority background process. Owners of client nodes are not paid for participation, but part of a prize for solution of the distributed.net problem is given to the owner of the client node that solves the problem.  The distriblets project was a pre-cursor to the work described here in which a user needed to download a separate helper application to participate in the distributed computation.

The second approach used by ADCSs is to execute Java applets on the client node.  This approach is used by the POPCORN [7], Charlotte [1] and the current distriblets [11] projects.  In contrast to the first approach, the client nodes in these ADCSs do not download any executable code prior to active participation in the ADCS, but rather join an ADCS through a Web browser.  Client nodes find distributors using portal nodes and then download a Java applet along with data from the distributor at the time of participation.  Client nodes execute the applet and report back results to the distributor, at which time they may request additional data for processing.  

The Charlotte project [1] provides a processing environment based on the World Wide Web.   Charlotte implements a shared memory and inter-process communication paradigm currently used in multiple processor machines. Charlotte gave Java applets the ability to access variables on the host computer as if they were their own.  Thus Charlotte uses the medium of the World Wide Web to create a parallel programming environment.

2. The Distriblets Approach

The remainder of this paper explores the details of the current distriblets project [11], which uses an applet-based approach to distributed computing so that any user with a Java-enabled browser may participate in an anonymous distributed computation.  The current project has evolved as we have explored different approaches 

for distributing computational workload to available machines on the Internet.  The current system is implemented in Java, and provides a framework for an application programmer to develop a Java applet to permit multiple machines to download and execute portions of a computation.  Using this system, programmers could potentially have a large number of machines executing their computations.

The current project uses Java to provide a parallel programming environment suitable for coarse-grain parallel computations.  A Java applet is downloaded from a server to a machine on the Web. The applet then downloads from the server a set of parameters that define a portion of the computation.  When the computations are completed, the applet returns the results to the server.  This approach is a further development of  previous system versions described in [2], [3], and [5].

The remainder of the paper describes the architecture and implementation of the distributed computation system, how it differs from previous work, and our experience in using it.  Finally, the paper presents some ideas for extension of this work in future implementations.

1. 
Design and Implementation

2.1 The Distriblet Framework
In this section, we describe the three components of the distributed computation: the Helper Computer, Distribution Server, and the Computation Server.  These components are shown in Figure 1. The Helper Computer, the client-side in the figure, can be any computer on the Internet with a Java-enabled Web browser.  When a user wishes to participate in a distributed computation, the user makes a Web connection to the Distribution Server to locate a computation to be performed.  The Helper Computer then connects to a Computation Server with work to distribute, downloads a Java class to execute (a distriblet), executes it, and returns the result to the Computation Server.

[image: image1.wmf] 

Server

-

side

 

Client

-

side

 

Distriblet

 

 

Web Server

 

Web site

 

 

Distriblet

 

Request

 

Job Registration

 

&

 

 Un

-

registration

 

Re

-

generate

 

Jobs list

 

Registrar

 

Distribution 

Server

 

Data request

 

&

 

Result return 

transferDistri

blet

 

Request

 

Computational

 

Server

 

 


Legend

[image: image2.wmf] 

 


Primary control point

[image: image3.wmf] 

 


Independent process

[image: image4.wmf] 

 


Secondary control point

[image: image5.wmf] 


Instantiation

[image: image6.wmf] 


Communication

Figure 1: Current Distriblets Project Design

The Distribution Server, the Computation Server, and the distriblet class have all been implemented as part of this project.  An application programmer who wishes to prepare an computation for distribution must prepare a Java class, called a distriblet, to perform the computation.  This class must extend a class we have written, distributable.  The class distributable includes some pre-written methods that perform handle the communications between the Helper Computer and the Computation Server.  Other methods, directly related to the computation the programmer wishes to distribute, must be implemented by the programmer.  The Computation Server registers the computation with the Distribution Server, so that Helper Computer can locate the Computation Server.

The distriblet is a Java applet.  Java applets are designed to be downloaded by Web browsers and execute within the browser.  Java applets have security restrictions so that they cannot damage the computer on which they are running.  For example, Java applets cannot access local files on the machine on which they are running, and cannot make network connections to sites other than the one from which they have been downloaded.  By implementing the distriblet as a an applet, the user of the Helper Computer can be assured that the distriblet cannot do damage to their computer.

On the other hand, the current version of Java allows a Java applet to ask the user to violate any of the applet security restrictions [6].  So, for example, if the programmer of the applet needs to make third party network connections, the distriblet can ask the user of the Helper Computer for permission.  If the user denies permission, then the distriblet terminates.  When the user selects a computation to participate in, the user is given an opportunity to indicate whether or not they are willing to allow applet security violations.

1.2 Comparison with Previous Work

There have been two earlier versions of the Distriblet system, described in [2], [3], and [5].  In the first version, the Helper Computer could be configured to automatically download a computation whenever it was idle.  This automatic participation required that the user install a Java application, instead of an applet, on the Helper Computer.   This requirement was a barrier to participation, and also did not provide the user with the same level of protection against malicious code as that provided by an applet.

In the second version of the Distriblet system, the Helper Application was replaced by an applet, which provided increased security.  The Helper Applet had two functions: presenting an interface to allow the user to communicate with the Distribution Server to select a computation to participate in, and downloading the necessary Java code and parameters from the Computation Server.  Since the Helper Applet had to communicate with both the Distribution Server and the Computation Server, it violated the applet security model.  To work around this restriction, the Helper Applet always had to ask the user for permission to violate the applet security model, another barrier to participation.

In the current version, the functions of the Helper Applet have been separated.  The user selects a computation to participate in by using an HTML form downloaded from the Distribution Server.  The communications with the Computation Server is initiated by the Distribution Server.  This causes the distriblet to be downloaded to the Helper Computer from the Computation Server, and then the distriblet itself handles further communications with the Computation Server.  Any request to violate an aspect of applet security is made by the distriblet itself, instead of the Helper Applet as in the second version.

1.3 Details of the Implementation

We now describe the operation of our system, from the point of view of the Helper Computer:

1. Connect to the Distribution Server

When the user of the Helper Application wishes to participate in a computation, the user makes a Web connection to the Distribution Server.  It is expected that there will only be one, or a small number of, Distribution Servers, so the user will know the URL of the Distribution Server, or have it saved as a Favorite / Bookmark.  Alternatively, there can be a link to the Distribution Server from well-known Web portals.

2. Select a Computation to Assist

The Distribution Server will provide the user with a Web page indicating available computations, called the Chooser page.  The user can either select a specific computation, or select Continuous Execution, in which case the Helper Computer will participate in multiple computations, one after another, until the user manually terminates participation in these computations.

3. Download Work

Based on the user’s selections on the Chooser page, the Distribution Server selects a computation for the user to participate in. The Distribution Server then provides another Web page to the user, called the Distriblet Runner page; one section of this Web page includes a reference to the distriblet applet on the appropriate Computation Server.  When the Distriblet Runner page is loaded into the user’s Web browser, it downloads the distriblet applet from the Computation Server. 

4. Retrieve Data

When the distriblet begins running, it calls its getArgs method, which retrieves whatever data is needed to execute this particular portion of the distributed application. 

5. Execute

The distriblet’s computation is performed by calling the distriblet execute method. The programmer’s execute method can operate on the data in any way permitted by the applet security model.  Since Java allows the programmer to ask the user for permission to violate some aspect of the applet security model, the programmer can ask for such permission in the execute method.

6. Transmit Results

 
After the execute method completes, the distriblet calls its sendResults method, which transmits any necessary results to the Computation Server.

7. Get More Work

The distriblet then calls its getArgs method again to retrieve more data from the Computation Server and continues to run the execute method on that data.  If the Computation Server has no more data to distribute, it sends a NoMoreData message to the distriblet.  When this occurs, if the user has not selected Continuous Execution, the user’s participation in the distributed computation ends.  If the user has selected Continuous Execution, then the distriblet causes the Distriblet Runner Web page to reload, which allows the Distribution Server to provide a reference to a new distributed computation for the user to participate in.

8.
Terminate Participation

If the user wishes to stop participating in a distributed computation, the user presses the “Stop” button provided on the Distriblet Runner Web page.

1.4  The Distribution Server

The job of the Distribution Server is to keep track of what computations are available, and to provide Chooser Web pages and Distriblet Runner Web pages to Helper Computers.   Our design envisions having only a single Distribution Server, so that users would have only one place to contact to gain access to many different distributed computations.  Having a single point of contact is justified by the fact that the Distribution Server’s job is just to put the Helper Computer and Computation Server in contact, and then the Distribution Server is no longer involved in the communications.  Furthermore, the design on the Distribution Server would make it relatively easy to have multiple machines serving the Distribution Server’s URL if the load on the Distribution Server increased..

2.5  The Computation Server

When the Computation Server starts, it registers with the Distribution Server, so that the Distribution Server can direct Helper Computers to this Computation Server.  On request from the Helper Computer, the Computation Server downloads the distriblet to the Helper Computer.  It also provides parameters in response to a getArgs request and receives results when the Helper executes sendResults.   When the Computation Server downloads a set of parameters, it starts a timer; if the timer expires before the corresponding results are received, the Computation Server considers this set of parameters lost, and will send them to another Helper Computer for execution.

Since the Helper Computer downloads the distriblet applet via a Web connection, the Computation Server must be running a Web server.  In order to minimize the software requirements for running a Computation Server, we have implemented a lightweight Web server for use on a Computation Server that does not otherwise need a Web server.  The lightweight Web server only responds to requests for the distriblet, and doesn’t implement the other services normally provided by a Web server.

2.6  Off-Line Computation

The earlier versions of the distriblet system assumed that the Helper Computer was connected to the Internet throughout its participation in the distributed computation.  In this version, we have allowed for the possibility of off-line participation in a distributed computation.
If a Helper Computer connects to the Internet through a dial-up connection, off-line computation allows the user to connect to the Internet, connect to the Distribution Server and the Computation Server and download several sets of parameters, and then disconnect from the Internet.  When all of the computations are done, typically overnight, the user re-connects to the Internet and uploads the results of the computations.  The Computation Server needs to set an appropriate timeout for off-line computations.

2. Results

In order to test the functionality and performance of our distriblet system, we wrote distriblets for several applications.  We report on one of those applications here.

We wrote a distributed application to check for primality of Mersenne numbers.  In 1644, Mersenne conjectured that numbers of the form 2p-1 were prime for certain prime numbers p.  Even though Mersenne’s conjecture was incorrect, number of the form 2p-1 are called Mersenne numbers, and those that are prime are called Mersenne primes  [10].

There has been significant mathematical research devoted to the discovery of Mersenne primes.  A large-scale Internet-based search for Mersenne primes called the Great Internet Mersenne Prime Search (GIMPS) has been running since 1996, and has led to the discovery of four new Mersenne primes [10].  

Like the GIMPS software, we have used the Lucas-Lehmer primality test to search for Mersenne primes [10].  We implemented this test in the distriblet framework, and each chunk of the computation included several primes p, which would be used to create candidate Mersenne numbers 2p-1 to test for primality.  Since the goal of this application was to test the functionality and performance of the distriblet system and not to discover new Mersenne primes, we did not uses values of p which could have led to the discovery of new primes; instead, we used values of p for the primality of  2p-1 is already known.  This allowed us to create chunks that could be computed in times on the order of minutes; values of p for the which the primality of  2p-1 is unknown would require on the order of years to complete.

We performed two tests using this Mersenne prime distributed application.  The first test used a fixed number of identical helper computers to run chunks of the distributed application; all were Pentium-class personal computers.  We compared the use of one helper computer to the use of ten helper computers.  In each case, we ran five hundred chunks.  The results showed total elapsed time of 37.77 minutes with one computer vs. 5.35 minutes, a speed up by a factor of 7.06 with 10 computers.

In the second test, we invited a large number of users to access the system.  We used this experience to test the ability of the servers to serve a moderate number of simultaneous users.  We collected data for nine days of system usage.  The results are shown in Figures 2 and 3.  In Figure 2, we show the number of unique hosts participating as helper computers for each hour of the test period.  We saw an average of 4.7 hosts per hour, with a maximum of 15 hosts and a minimum of 1.  


[image: image7.wmf]Figure 2: Unique Hosts Per Hour

0

2

4

6

8

10

12

14

16

1721

1809

1821

1909

1921

2009

2021

2109

2121

2209

2221

2309

2321

2421

2509

2606

2618

Time (Date/Hour)

Hosts


Figure 3 shows the number of chunks per hours served by the Computation Server.  On average 9.6 chunks were served per hour during the test period, with a maximum of 120 and a minimum of 1.  We note that the largest number of chunks per hour were served at the beginning of the test period, but the largest number of hosts per hour occurred in the middle of the test period.  The reason for this mismatch is that the chunks served at the beginning of the test period were for smaller values of p, for which the chunk computation time was smaller.  The chunks served later in the test period required longer computation times, so more helpers were able to complete fewer chunks per hour.


[image: image8.wmf]Figure 3: Number of Chunks Per Hour

0

20

40

60

80

100

120

140

1721

1809

1821

1909

1921

2009

2021

2109

2121

2209

2221

2309

2321

2421

2509

2606

2618

Time (Date/Hour)

Chunks


Overall, the test shows the ability of our system to handle a moderate number of simultaneous users over a long period of time, and to serve distriblets to helper computers not under our administrative control.  The test system is available at http://distriblets.wpi.edu.

3. Conclusions and Future Work

We have described a project to design and implement a distributed computation system written in Java to run over the World Wide Web.  We implemented the framework of the system: the distriblet applet, the Distribution Server, and the Computation Server.  A programmer wishing to prepare an application for execution using our system needs to create a Java class, following our specifications, to carry out the computation.  A user willing to help by executing part of the computation needs only to connect to the Distribution Server on the Web and then download the distriblet applet.  The distriblet downloads the arguments to use, executes the computation, and returns the results.

In the course of our work on this project, we have identified some opportunities for extensions or improvements, which could make the system more useful in the future.  One set of improvements focus on security and authentication, so that a Computation Server could authenticate the identity of a host returning results to it, and that the results being returned were correct.

To provide an incentive to users to participate, a micropayment system could be used.  Micropayment systems have been proposed as a way of collecting small payments for access to Web resources.  These same micropayment systems could be used to pay users a small amount for allowing their system to be used to download and execute distributed computations.  Thus users could use the time when their systems would otherwise be idle to earn credits to be used later for access to Web resources.  This could provide sufficient incentive for large numbers of users to make their systems available for distributed computations.  We have implemented hooks in our system to allow a micropayment system to be added in the future.

References

1. A, Baratloo, M. Karaul, Z. Kadem, and P. Wyckoff.  “Charlotte: Metacomputing on the Web”, Proceedings of the International Conference on Parallel and Distributed Systems, Dijon, France. September, 1996. 

2. Brian Brennan, Chris Brennan, David Finkel and Craig E. Wills, “Java-Based Load Distribution on the World Wide Web”, Proceedings of the International Network Conference 1998 (July, 1998), pp. 9 – 14 

3. James F. Carlson, David V. Esposito, Nathaniel J. Springer, David Finkel and Craig E. Wills,  “Applet-Based Distributed Computing on the Web,”  Proceedings of the Workshop on Distributed Computing on the Web (June, 1999), pp. 69 – 76.

4. Distributed.net, “Distributed.net Node Zero”, http://www.distributed.net/, 1999. 

5. David Finkel, Craig E. Wills, Brian Brennan, and Chris Brennan, “Distriblets: Java-Based Distributed Computing on the Web,” Internet Research Vol. 9 No. 1, pp. 35 – 40, 1999.

6. JavaSoft. “The JavaSoft Homepage”. World Wide Web, http://www.javasoft.com. 1999. 

7. “The POPCORN Project”, http://www.cs.huji.ac.il/~popcorn/index.html, 1999.

8. “SETI@home: Search for Extraterrestrial Intelligence at Home”, http://setiathome.ssl.berkeley.edu/, 1999. 

9. Woltman, George, “The Great Internet Mersenne Prime Search,” http://www.mersenne.org/, 1999.

10.  Michael J. Ciaraldi, David Finkel and Craig E. Wills, “Risks in Anonymous Distributed Computing Systems,” Proceedings of the International Network Conference 2000 (July, 2000).

11.  David Finkel, Craig E. Wills, Kevin Amorin, Adam Covati and Michael Lee, “An Applet-Based Approach to Large-Scale Distributed Computing,” Proceedings of the International Network Conference 2000 (July, 2000).

11

_1029515588.xls
Chart2

		1721

		1722

		1723

		1800

		1801

		1802

		1803

		1804

		1805

		1806

		1807

		1808

		1809

		1810

		1811

		1812

		1813

		1814

		1815

		1816

		1817

		1818

		1819

		1820

		1821

		1822

		1823

		1900

		1901

		1902

		1903

		1904

		1905

		1906

		1907

		1908

		1909

		1910

		1911

		1912

		1913

		1914

		1915

		1916

		1917

		1918

		1919

		1920

		1921

		1922

		1923

		2000

		2001

		2002

		2003

		2004

		2005

		2006

		2007

		2008

		2009

		2010

		2011

		2012

		2013

		2014

		2015

		2016

		2017

		2018

		2019

		2020

		2021

		2022

		2023

		2100

		2101

		2102

		2103

		2104

		2105

		2106

		2107

		2108

		2109

		2110

		2111

		2112

		2113

		2114

		2115

		2116

		2117

		2118

		2119

		2120

		2121

		2122

		2123

		2200

		2201

		2202

		2203

		2204

		2205

		2206

		2207

		2208

		2209

		2210

		2211

		2212

		2213

		2214

		2215

		2216

		2217

		2218

		2219

		2220

		2221

		2222

		2223

		2300

		2301

		2302

		2303

		2304

		2305

		2306

		2307

		2308

		2309

		2310

		2311

		2312

		2313

		2314

		2315

		2316

		2317

		2318

		2319

		2320

		2321

		2322

		2323

		2412

		2413

		2414

		2415

		2416

		2417

		2418

		2419

		2420

		2421

		2422

		2423

		2500

		2501

		2502

		2503

		2504

		2505

		2506

		2507

		2508

		2509

		2510

		2511

		2521

		2522

		2523

		2600

		2601

		2602

		2603

		2604

		2605

		2606

		2607

		2608

		2609

		2610

		2611

		2612

		2613

		2614

		2615

		2616

		2617

		2618

		2619

		2620

		2621

		2622



Chunk

Time (Date/Hour)

Hosts

Figure 2: Unique Hosts Per Hour

3

3

3

5

5

5

5

5

5

5

4

5

4

4

3

3

7

7

6

5

5

5

3

4

3

2

2

2

2

2

2

3

3

3

3

2

2

2

2

2

4

6

6

4

4

2

3

3

3

3

3

3

4

5

5

4

5

5

3

5

3

3

4

3

4

6

3

6

3

6

3

5

2

5

4

3

4

3

2

5

2

5

2

4

3

4

1

2

1

2

5

2

3

6

3

5

6

13

13

11

13

9

10

12

11

10

11

12

9

13

10

9

9

10

6

5

10

10

8

15

13

9

8

10

9

8

7

8

10

4

9

9

7

7

8

7

7

7

6

7

4

8

4

4

3

5

2

2

2

5

3

2

4

4

1

4

3

4

3

3

4

4

4

3

2

4

1

4

3

2

1

3

1

2

1

3

1

3

3

2

3

3

2

4

2

3

2

4

4

2

3

1

3

2

4

2

3



Sheet1

		Time (Date-Hour)		# Chunks				Time		Unquie Hosts Returning Values

		1721		120				1721		3

		1722		120				1722		3

		1723		70				1723		3

		1800		110				1800		5

		1801		80				1801		5

		1802		70				1802		5

		1803		55				1803		5

		1804		50				1804		5

		1805		45				1805		5

		1806		30				1806		5

		1807		30				1807		4

		1808		30				1808		5

		1809		30				1809		4

		1810		20				1810		4

		1811		20				1811		3

		1812		20				1812		3

		1813		55				1813		7

		1814		74				1814		7

		1815		42				1815		6

		1816		32				1816		5

		1817		45				1817		5

		1818		28				1818		5				Max Hosts = 15				Avg =		4.7005076142		hosts

		1819		26				1819		3				Min Hosts = 1

		1820		28				1820		4

		1821		22				1821		3

		1822		9				1822		2

		1823		8				1823		2

		1900		8				1900		2

		1901		8				1901		2

		1902		9				1902		2

		1903		7				1903		2

		1904		12				1904		3

		1905		13				1905		3

		1906		11				1906		3

		1907		11				1907		3

		1908		9				1908		2

		1909		9				1909		2

		1910		10				1910		2

		1911		8				1911		2

		1912		6				1912		2

		1913		17				1913		4

		1914		22				1914		6

		1915		22				1915		6

		1916		13				1916		4						Max Chunks = 120						Avg =		9.6285714286		hosts

		1917		13				1917		4						Min Chunks = 1

		1918		8				1918		2

		1919		11				1919		3

		1920		11				1920		3

		1921		9				1921		3

		1922		11				1922		3

		1923		9				1923		3

		2000		18				2000		3

		2001		18				2001		4

		2002		19				2002		5

		2003		17				2003		5

		2004		15				2004		4

		2005		19				2005		5

		2006		15				2006		5

		2007		14				2007		3

		2008		10				2008		5

		2009		9				2009		3

		2010		9				2010		3

		2011		7				2011		4

		2012		9				2012		3

		2013		9				2013		4

		2014		20				2014		6

		2015		8				2015		3

		2016		11				2016		6

		2017		7				2017		3

		2018		11				2018		6

		2019		7				2019		3

		2020		9				2020		5

		2021		6				2021		2

		2022		8				2022		5

		2023		9				2023		4

		2100		5				2100		3

		2101		12				2101		4

		2102		11				2102		3

		2103		8				2103		2

		2104		10				2104		5

		2105		10				2105		2

		2106		11				2106		5

		2107		5				2107		2

		2108		7				2108		4

		2109		9				2109		3

		2110		8				2110		4

		2111		2				2111		1

		2112		4				2112		2

		2113		4				2113		1

		2114		4				2114		2

		2115		7				2115		5

		2116		7				2116		2

		2117		7				2117		3

		2118		12				2118		6

		2119		8				2119		3

		2120		10				2120		5

		2121		12				2121		6

		2122		19				2122		13

		2123		19				2123		13

		2200		19				2200		11

		2201		17				2201		13

		2202		17				2202		9

		2203		13				2203		10

		2204		19				2204		12

		2205		15				2205		11

		2206		17				2206		10

		2207		14				2207		11

		2208		17				2208		12

		2209		13				2209		9

		2210		18				2210		13

		2211		12				2211		10

		2212		11				2212		9

		2213		11				2213		9

		2214		11				2214		10

		2215		7				2215		6

		2216		7				2216		5

		2217		16				2217		10

		2218		14				2218		10

		2219		11				2219		8

		2220		23				2220		15

		2221		18				2221		13

		2222		15				2222		9

		2223		12				2223		8

		2300		14				2300		10

		2301		13				2301		9

		2302		10				2302		8

		2303		12				2303		7

		2304		11				2304		8

		2305		13				2305		10

		2306		9				2306		4

		2307		11				2307		9

		2308		14				2308		9

		2309		11				2309		7

		2310		10				2310		7

		2311		10				2311		8

		2312		11				2312		7

		2313		8				2313		7

		2314		8				2314		7

		2315		7				2315		6

		2316		8				2316		7

		2317		5				2317		4

		2318		9				2318		8

		2319		6				2319		4

		2320		4				2320		4

		2321		3				2321		3

		2322		5				2322		5

		2323		3				2323		2

		2412		2				2412		2

		2413		3				2413		2

		2414		7				2414		5

		2415		5				2415		3

		2416		3				2416		2

		2417		6				2417		4

		2418		5				2418		4

		2419		2				2419		1

		2420		8				2420		4

		2421		4				2421		3

		2422		6				2422		4

		2423		4				2423		3

		2500		6				2500		3

		2501		5				2501		4

		2502		6				2502		4

		2503		5				2503		4

		2504		4				2504		3

		2505		2				2505		2

		2506		5				2506		4

		2507		4				2507		1

		2508		10				2508		4

		2509		9				2509		3

		2510		9				2510		2

		2511		1				2511		1

		2521		3				2521		3

		2522		1				2522		1

		2523		3				2523		2

		2600		1				2600		1

		2601		4				2601		3

		2602		1				2602		1

		2603		4				2603		3

		2604		4				2604		3

		2605		3				2605		2

		2606		3				2606		3

		2607		8				2607		3

		2608		7				2608		2

		2609		9				2609		4

		2610		8				2610		2

		2611		8				2611		3

		2612		7				2612		2

		2613		9				2613		4

		2614		9				2614		4

		2615		6				2615		2

		2616		7				2616		3

		2617		7				2617		1

		2618		7				2618		3

		2619		7				2619		2

		2620		8				2620		4

		2621		8				2621		2

		2622		5				2622		3





Sheet1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0



Chunk

Time (Date/Hour)

Hosts

Figure 1: Unique Hosts Per Hour

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet2

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0



# Chunks

Time (Date/Hour)

Chunks

Figure 2: Number of Chunks Per Hour

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet3

		





		






_1029515635.xls
Chart3

		1721

		1722

		1723

		1800

		1801

		1802

		1803

		1804

		1805

		1806

		1807

		1808

		1809

		1810

		1811

		1812

		1813

		1814

		1815

		1816

		1817

		1818

		1819

		1820

		1821

		1822

		1823

		1900

		1901

		1902

		1903

		1904

		1905

		1906

		1907

		1908

		1909

		1910

		1911

		1912

		1913

		1914

		1915

		1916

		1917

		1918

		1919

		1920

		1921

		1922

		1923

		2000

		2001

		2002

		2003

		2004

		2005

		2006

		2007

		2008

		2009

		2010

		2011

		2012

		2013

		2014

		2015

		2016

		2017

		2018

		2019

		2020

		2021

		2022

		2023

		2100

		2101

		2102

		2103

		2104

		2105

		2106

		2107

		2108

		2109

		2110

		2111

		2112

		2113

		2114

		2115

		2116

		2117

		2118

		2119

		2120

		2121

		2122

		2123

		2200

		2201

		2202

		2203

		2204

		2205

		2206

		2207

		2208

		2209

		2210

		2211

		2212

		2213

		2214

		2215

		2216

		2217

		2218

		2219

		2220

		2221

		2222

		2223

		2300

		2301

		2302

		2303

		2304

		2305

		2306

		2307

		2308

		2309

		2310

		2311

		2312

		2313

		2314

		2315

		2316

		2317

		2318

		2319

		2320

		2321

		2322

		2323

		2412

		2413

		2414

		2415

		2416

		2417

		2418

		2419

		2420

		2421

		2422

		2423

		2500

		2501

		2502

		2503

		2504

		2505

		2506

		2507

		2508

		2509

		2510

		2511

		2521

		2522

		2523

		2600

		2601

		2602

		2603

		2604

		2605

		2606

		2607

		2608

		2609

		2610

		2611

		2612

		2613

		2614

		2615

		2616

		2617

		2618

		2619

		2620

		2621

		2622



# Chunks

Time (Date/Hour)

Chunks

Figure 3: Number of Chunks Per Hour

120

120

70

110

80

70

55

50

45

30

30

30

30

20

20

20

55

74

42

32

45

28

26

28

22

9

8

8

8

9

7

12

13

11

11

9

9

10

8

6

17

22

22

13

13

8

11

11

9

11

9

18

18

19

17

15

19

15

14

10

9

9

7

9

9

20

8

11

7

11

7

9

6

8

9

5

12

11

8

10

10

11

5

7

9

8

2

4

4

4

7

7

7

12

8

10

12

19

19

19

17

17

13

19

15

17

14

17

13

18

12

11

11

11

7

7

16

14

11

23

18

15

12

14

13

10

12

11

13

9

11

14

11

10

10

11

8

8

7

8

5

9

6

4

3

5

3

2

3

7

5

3

6

5

2

8

4

6

4

6

5

6

5

4

2

5

4

10

9

9

1

3

1

3

1

4

1

4

4

3

3

8

7

9

8

8

7

9

9

6

7

7

7

7

8

8

5



Sheet1

		Time (Date-Hour)		# Chunks				Time		Unquie Hosts Returning Values

		1721		120				1721		3

		1722		120				1722		3

		1723		70				1723		3

		1800		110				1800		5

		1801		80				1801		5

		1802		70				1802		5

		1803		55				1803		5

		1804		50				1804		5

		1805		45				1805		5

		1806		30				1806		5

		1807		30				1807		4

		1808		30				1808		5

		1809		30				1809		4

		1810		20				1810		4

		1811		20				1811		3

		1812		20				1812		3

		1813		55				1813		7

		1814		74				1814		7

		1815		42				1815		6

		1816		32				1816		5

		1817		45				1817		5

		1818		28				1818		5				Max Hosts = 15				Avg =		4.7005076142		hosts

		1819		26				1819		3				Min Hosts = 1

		1820		28				1820		4

		1821		22				1821		3

		1822		9				1822		2

		1823		8				1823		2

		1900		8				1900		2

		1901		8				1901		2

		1902		9				1902		2

		1903		7				1903		2

		1904		12				1904		3

		1905		13				1905		3

		1906		11				1906		3

		1907		11				1907		3

		1908		9				1908		2

		1909		9				1909		2

		1910		10				1910		2

		1911		8				1911		2

		1912		6				1912		2

		1913		17				1913		4

		1914		22				1914		6

		1915		22				1915		6

		1916		13				1916		4						Max Chunks = 120						Avg =		9.6285714286		hosts

		1917		13				1917		4						Min Chunks = 1

		1918		8				1918		2

		1919		11				1919		3

		1920		11				1920		3

		1921		9				1921		3

		1922		11				1922		3

		1923		9				1923		3

		2000		18				2000		3

		2001		18				2001		4

		2002		19				2002		5

		2003		17				2003		5

		2004		15				2004		4

		2005		19				2005		5

		2006		15				2006		5

		2007		14				2007		3

		2008		10				2008		5

		2009		9				2009		3

		2010		9				2010		3

		2011		7				2011		4

		2012		9				2012		3

		2013		9				2013		4

		2014		20				2014		6

		2015		8				2015		3

		2016		11				2016		6

		2017		7				2017		3

		2018		11				2018		6

		2019		7				2019		3

		2020		9				2020		5

		2021		6				2021		2

		2022		8				2022		5

		2023		9				2023		4

		2100		5				2100		3

		2101		12				2101		4

		2102		11				2102		3

		2103		8				2103		2

		2104		10				2104		5

		2105		10				2105		2

		2106		11				2106		5

		2107		5				2107		2

		2108		7				2108		4

		2109		9				2109		3

		2110		8				2110		4

		2111		2				2111		1

		2112		4				2112		2

		2113		4				2113		1

		2114		4				2114		2

		2115		7				2115		5

		2116		7				2116		2

		2117		7				2117		3

		2118		12				2118		6

		2119		8				2119		3

		2120		10				2120		5

		2121		12				2121		6

		2122		19				2122		13

		2123		19				2123		13

		2200		19				2200		11

		2201		17				2201		13

		2202		17				2202		9

		2203		13				2203		10

		2204		19				2204		12

		2205		15				2205		11

		2206		17				2206		10

		2207		14				2207		11

		2208		17				2208		12

		2209		13				2209		9

		2210		18				2210		13

		2211		12				2211		10

		2212		11				2212		9

		2213		11				2213		9

		2214		11				2214		10

		2215		7				2215		6

		2216		7				2216		5

		2217		16				2217		10

		2218		14				2218		10

		2219		11				2219		8

		2220		23				2220		15

		2221		18				2221		13

		2222		15				2222		9

		2223		12				2223		8

		2300		14				2300		10

		2301		13				2301		9

		2302		10				2302		8

		2303		12				2303		7

		2304		11				2304		8

		2305		13				2305		10

		2306		9				2306		4

		2307		11				2307		9

		2308		14				2308		9

		2309		11				2309		7

		2310		10				2310		7

		2311		10				2311		8

		2312		11				2312		7

		2313		8				2313		7

		2314		8				2314		7

		2315		7				2315		6

		2316		8				2316		7

		2317		5				2317		4

		2318		9				2318		8

		2319		6				2319		4

		2320		4				2320		4

		2321		3				2321		3

		2322		5				2322		5

		2323		3				2323		2

		2412		2				2412		2

		2413		3				2413		2

		2414		7				2414		5

		2415		5				2415		3

		2416		3				2416		2

		2417		6				2417		4

		2418		5				2418		4

		2419		2				2419		1

		2420		8				2420		4

		2421		4				2421		3

		2422		6				2422		4

		2423		4				2423		3

		2500		6				2500		3

		2501		5				2501		4

		2502		6				2502		4

		2503		5				2503		4

		2504		4				2504		3

		2505		2				2505		2

		2506		5				2506		4

		2507		4				2507		1

		2508		10				2508		4

		2509		9				2509		3

		2510		9				2510		2

		2511		1				2511		1

		2521		3				2521		3

		2522		1				2522		1

		2523		3				2523		2

		2600		1				2600		1

		2601		4				2601		3

		2602		1				2602		1

		2603		4				2603		3

		2604		4				2604		3

		2605		3				2605		2

		2606		3				2606		3

		2607		8				2607		3

		2608		7				2608		2

		2609		9				2609		4

		2610		8				2610		2

		2611		8				2611		3

		2612		7				2612		2

		2613		9				2613		4

		2614		9				2614		4

		2615		6				2615		2

		2616		7				2616		3

		2617		7				2617		1

		2618		7				2618		3

		2619		7				2619		2

		2620		8				2620		4

		2621		8				2621		2

		2622		5				2622		3





Sheet1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0



Chunk

Time (Date/Hour)

Hosts

Figure 1: Unique Hosts Per Hour

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet2

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0



# Chunks

Time (Date/Hour)

Chunks

Figure 2: Number of Chunks Per Hour

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet3

		





		






