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Abstract

Anonymous distributed  computing systems consist of potentially millions of heterogeneous processing nodes connected by the global Internet. These nodes can be administered by thousands of organizations and individuals, with no direct knowledge of each other.   This work defines anonymous distributed computing systems in general then focuses on  the specifics of an applet-based  approach for large-scale distributed computing on the Internet.  A user wishing to participate in a computation connects to a Distribution Server, which provides information about available computations, and then connects to a Computation Server with a computation to distribute.  A Java class is downloaded, which communicates with the Computation Server to obtain data, performs the computation, and returns the result.  Since any computer on the Internet can participate in these computations, potentially a large number of computers can participate in a single computation.
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1. Anonymous Distributed Computing Systems

A number of approaches have traditionally been used in research and practice to build distributed computing environments using a set of networked machines.  These approaches include:

· Autonomous systems where machines run standalone, but users can explicitly access services on other machines, such as remote login or file transfer.

· Distributed operating systems, which hide the details of the network and the existence of multiple machines from the user, providing the abstraction of a single virtual computer system.  All of the machines in the system are under the control of a single administrative domain.

· Network file systems, the most common distributed computing environment, in which mostly autonomous machines share file systems located on remote file servers.   Here, too, a single administrative domain controls the machines.

Against the backdrop of these traditional approaches has arisen a new approach that seeks to solve distributed computing problems on a scale not possible with previous approaches.  We refer to this approach as anonymous distributed computing (ADC) and these systems as anonymous distributed computing systems (ADCSs) [10].

An ADCS consists of three types of nodes: distributor nodes for distributing pieces of a distributed computation, client nodes for executing these pieces and reporting results back to a distributor node, and portal nodes for serving as central sites where client nodes can be directed to distributor nodes.  In general, these three types of nodes are not under the same administrative control. 

ADCSs have several distinguishing characteristics:

· They consist of potentially millions of client nodes, each anonymously providing a piece of a distributed computation.

· The client nodes can vary widely in processing speed, memory capacity, and architecture.

· Each client node may be under the control of a different administrative domain.

· Client nodes may be unaware of each other.

· Client nodes may not always be available in the ADCS.

· Communication between client and distributor nodes is through the global Internet.  This communication may be unreliable, intermittent, and at varying bandwidth.

· Client nodes may crash or unexpectedly withdraw from the ACDS at any time.

· A client node might participate in several ADCSs.

· Client nodes in an ADCS may participate voluntarily or they might receive payment, perhaps dependent on the quantity or quality of their computations.

Two general approaches are currently being used for anonymous distributed computing systems.  In the first approach a client node first downloads an executable program from a portal node.  When the client node wishes to actively participate in the distributed computation, it contacts a distributor node for specific data to use for processing and reports its results back to the distributor.  At this point, the client node may request additional data from the distributor for execution of another computation piece.  This approach is used by  three ADCSs – The SETI@home project [8], distributed.net [4] and the original distriblets project [2, 5].  The SETI@home project uses a distributor node to coordinate the work of client nodes to download radio telescope logs to search for evidence of extra-terrestrial intelligent life.  Client nodes execute the program as a screen-saver so it is run when each node is otherwise idle.  The distributed.net project is focused on solving DES encryption problems by using client nodes to test possible encryption keys. Client nodes execute the program as a low-priority background process. Owners of client nodes are not paid for participation, but part of a prize for solution of the distributed.net problem is given to the owner of the client node that solves the problem.  The distriblets project was a pre-cursor to the work described here in which a user needed to download a separate helper application to participate in the distributed computation.

The second approach used by ADCSs is to execute Java applets on the client node.  This approach is used by the POPCORN [7], Charlotte [1] and the current distriblets [11] projects.  In contrast to the first approach, the client nodes in these ADCSs do not download any executable code prior to active participation in the ADCS, but rather join an ADCS through a Web browser.  Client nodes find distributors using portal nodes and then download a Java applet along with data from the distributor at the time of participation.  Client nodes execute the applet and report back results to the distributor, at which time they may request additional data for processing.  

The Charlotte project [1] provides a processing environment based on the World Wide Web.   Charlotte implements a shared memory and inter-process communication paradigm currently used in multiple processor machines. Charlotte gave Java applets the ability to access variables on the host computer as if they were their own.  Thus Charlotte uses the medium of the World Wide Web to create a parallel programming environment.

2. The Distriblets Approach

The remainder of this paper explores the details of the current distriblets project [11], which uses an applet-based approach to distributed computing so that any user with a Java-enabled browser may participate in an anonymous distributed computation.  The current project has evolved as we have explored different approaches 

for distributing computational workload to available machines on the Internet.  The current system is implemented in Java, and provides a framework for an application programmer to develop a Java applet to permit multiple machines to download and execute portions of a computation.  Using this system, programmers could potentially have a large number of machines executing their computations.

The current project uses Java to provide a parallel programming environment suitable for coarse-grain parallel computations.  A Java applet is downloaded from a server to a machine on the Web. The applet then downloads from the server a set of parameters that define a portion of the computation.  When the computations are completed, the applet returns the results to the server.  This approach is a further development of  previous system versions described in [2], [3], and [5].

The remainder of the paper describes the architecture and implementation of the distributed computation system, how it differs from previous work, and our experience in using it.  Finally, the paper presents some ideas for extension of this work in future implementations.

1. 
Design and Implementation

2.1 The Distriblet Framework
In this section, we describe the three components of the distributed computation: the Helper Computer, Distribution Server, and the Computation Server.  These components are shown in Figure 1. The Helper Computer, the client-side in the figure, can be any computer on the Internet with a Java-enabled Web browser.  When a user wishes to participate in a distributed computation, the user makes a Web connection to the Distribution Server to locate a computation to be performed.  The Helper Computer then connects to a Computation Server with work to distribute, downloads a Java class to execute (a distriblet), executes it, and returns the result to the Computation Server.
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Figure 1: Current Distriblets Project Design

The Distribution Server, the Computation Server, and the distriblet class have all been implemented as part of this project.  An application programmer who wishes to prepare an computation for distribution must prepare a Java class, called a distriblet, to perform the computation.  This class must extend a class we have written, distributable.  The class distributable includes some pre-written methods that perform handle the communications between the Helper Computer and the Computation Server.  Other methods, directly related to the computation the programmer wishes to distribute, must be implemented by the programmer.  The Computation Server registers the computation with the Distribution Server, so that Helper Computer can locate the Computation Server.

The distriblet is a Java applet.  Java applets are designed to be downloaded by Web browsers and execute within the browser.  Java applets have security restrictions so that they cannot damage the computer on which they are running.  For example, Java applets cannot access local files on the machine on which they are running, and cannot make network connections to sites other than the one from which they have been downloaded.  By implementing the distriblet as a an applet, the user of the Helper Computer can be assured that the distriblet cannot do damage to their computer.

On the other hand, the current version of Java allows a Java applet to ask the user to violate any of the applet security restrictions [6].  So, for example, if the programmer of the applet needs to make third party network connections, the distriblet can ask the user of the Helper Computer for permission.  If the user denies permission, then the distriblet terminates.  When the user selects a computation to participate in, the user is given an opportunity to indicate whether or not they are willing to allow applet security violations.

1.2 Comparison with Previous Work

There have been two earlier versions of the Distriblet system, described in [2], [3], and [5].  In the first version, the Helper Computer could be configured to automatically download a computation whenever it was idle.  This automatic participation required that the user install a Java application, instead of an applet, on the Helper Computer.   This requirement was a barrier to participation, and also did not provide the user with the same level of protection against malicious code as that provided by an applet.

In the second version of the Distriblet system, the Helper Application was replaced by an applet, which provided increased security.  The Helper Applet had two functions: presenting an interface to allow the user to communicate with the Distribution Server to select a computation to participate in, and downloading the necessary Java code and parameters from the Computation Server.  Since the Helper Applet had to communicate with both the Distribution Server and the Computation Server, it violated the applet security model.  To work around this restriction, the Helper Applet always had to ask the user for permission to violate the applet security model, another barrier to participation.

In the current version, the functions of the Helper Applet have been separated.  The user selects a computation to participate in by using an HTML form downloaded from the Distribution Server.  The communications with the Computation Server is initiated by the Distribution Server.  This causes the distriblet to be downloaded to the Helper Computer from the Computation Server, and then the distriblet itself handles further communications with the Computation Server.  Any request to violate an aspect of applet security is made by the distriblet itself, instead of the Helper Applet as in the second version.

1.3 Details of the Implementation

We now describe the operation of our system, from the point of view of the Helper Computer:

1. Connect to the Distribution Server

When the user of the Helper Application wishes to participate in a computation, the user makes a Web connection to the Distribution Server.  It is expected that there will only be one, or a small number of, Distribution Servers, so the user will know the URL of the Distribution Server, or have it saved as a Favorite / Bookmark.  Alternatively, there can be a link to the Distribution Server from well-known Web portals.

2. Select a Computation to Assist

The Distribution Server will provide the user with a Web page indicating available computations, called the Chooser page.  The user can either select a specific computation, or select Continuous Execution, in which case the Helper Computer will participate in multiple computations, one after another, until the user manually terminates participation in these computations.

3. Download Work

Based on the user’s selections on the Chooser page, the Distribution Server selects a computation for the user to participate in. The Distribution Server then provides another Web page to the user, called the Distriblet Runner page; one section of this Web page includes a reference to the distriblet applet on the appropriate Computation Server.  When the Distriblet Runner page is loaded into the user’s Web browser, it downloads the distriblet applet from the Computation Server. 

4. Retrieve Data

When the distriblet begins running, it calls its getArgs method, which retrieves whatever data is needed to execute this particular portion of the distributed application. 

5. Execute

The distriblet’s computation is performed by calling the distriblet execute method. The programmer’s execute method can operate on the data in any way permitted by the applet security model.  Since Java allows the programmer to ask the user for permission to violate some aspect of the applet security model, the programmer can ask for such permission in the execute method.

6. Transmit Results

 
After the execute method completes, the distriblet calls its sendResults method, which transmits any necessary results to the Computation Server.

7. Get More Work

The distriblet then calls its getArgs method again to retrieve more data from the Computation Server and continues to run the execute method on that data.  If the Computation Server has no more data to distribute, it sends a NoMoreData message to the distriblet.  When this occurs, if the user has not selected Continuous Execution, the user’s participation in the distributed computation ends.  If the user has selected Continuous Execution, then the distriblet causes the Distriblet Runner Web page to reload, which allows the Distribution Server to provide a reference to a new distributed computation for the user to participate in.

8.
Terminate Participation

If the user wishes to stop participating in a distributed computation, the user presses the “Stop” button provided on the Distriblet Runner Web page.

1.4  The Distribution Server

The job of the Distribution Server is to keep track of what computations are available, and to provide Chooser Web pages and Distriblet Runner Web pages to Helper Computers.   Our design envisions having only a single Distribution Server, so that users would have only one place to contact to gain access to many different distributed computations.  Having a single point of contact is justified by the fact that the Distribution Server’s job is just to put the Helper Computer and Computation Server in contact, and then the Distribution Server is no longer involved in the communications.  Furthermore, the design on the Distribution Server would make it relatively easy to have multiple machines serving the Distribution Server’s URL if the load on the Distribution Server increased..

2.5  The Computation Server

When the Computation Server starts, it registers with the Distribution Server, so that the Distribution Server can direct Helper Computers to this Computation Server.  On request from the Helper Computer, the Computation Server downloads the distriblet to the Helper Computer.  It also provides parameters in response to a getArgs request and receives results when the Helper executes sendResults.   When the Computation Server downloads a set of parameters, it starts a timer; if the timer expires before the corresponding results are received, the Computation Server considers this set of parameters lost, and will send them to another Helper Computer for execution.

Since the Helper Computer downloads the distriblet applet via a Web connection, the Computation Server must be running a Web server.  In order to minimize the software requirements for running a Computation Server, we have implemented a lightweight Web server for use on a Computation Server that does not otherwise need a Web server.  The lightweight Web server only responds to requests for the distriblet, and doesn’t implement the other services normally provided by a Web server.

2.6  Off-Line Computation

The earlier versions of the distriblet system assumed that the Helper Computer was connected to the Internet throughout its participation in the distributed computation.  In this version, we have allowed for the possibility of off-line participation in a distributed computation.
If a Helper Computer connects to the Internet through a dial-up connection, off-line computation allows the user to connect to the Internet, connect to the Distribution Server and the Computation Server and download several sets of parameters, and then disconnect from the Internet.  When all of the computations are done, typically overnight, the user re-connects to the Internet and uploads the results of the computations.  The Computation Server needs to set an appropriate timeout for off-line computations.

2. Results

In order to test the functionality and performance of our distriblet system, we wrote distriblets for several applications.  We report on one of those applications here.

We wrote a distributed application to check for primality of Mersenne numbers.  In 1644, Mersenne conjectured that numbers of the form 2p-1 were prime for certain prime numbers p.  Even though Mersenne’s conjecture was incorrect, number of the form 2p-1 are called Mersenne numbers, and those that are prime are called Mersenne primes  [10].

There has been significant mathematical research devoted to the discovery of Mersenne primes.  A large-scale Internet-based search for Mersenne primes called the Great Internet Mersenne Prime Search (GIMPS) has been running since 1996, and has led to the discovery of four new Mersenne primes [10].  

Like the GIMPS software, we have used the Lucas-Lehmer primality test to search for Mersenne primes [10].  We implemented this test in the distriblet framework, and each chunk of the computation included several primes p, which would be used to create candidate Mersenne numbers 2p-1 to test for primality.  Since the goal of this application was to test the functionality and performance of the distriblet system and not to discover new Mersenne primes, we did not uses values of p which could have led to the discovery of new primes; instead, we used values of p for the primality of  2p-1 is already known.  This allowed us to create chunks that could be computed in times on the order of minutes; values of p for the which the primality of  2p-1 is unknown would require on the order of years to complete.

We performed two tests using this Mersenne prime distributed application.  The first test used a fixed number of identical helper computers to run chunks of the distributed application; all were Pentium-class personal computers.  We compared the use of one helper computer to the use of ten helper computers.  In each case, we ran five hundred chunks.  The results showed total elapsed time of 37.77 minutes with one computer vs. 5.35 minutes, a speed up by a factor of 7.06 with 10 computers.

In the second test, we invited a large number of users to access the system.  We used this experience to test the ability of the servers to serve a moderate number of simultaneous users.  We collected data for nine days of system usage.  The results are shown in Figures 2 and 3.  In Figure 2, we show the number of unique hosts participating as helper computers for each hour of the test period.  We saw an average of 4.7 hosts per hour, with a maximum of 15 hosts and a minimum of 1.  
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Figure 3 shows the number of chunks per hours served by the Computation Server.  On average 9.6 chunks were served per hour during the test period, with a maximum of 120 and a minimum of 1.  We note that the largest number of chunks per hour were served at the beginning of the test period, but the largest number of hosts per hour occurred in the middle of the test period.  The reason for this mismatch is that the chunks served at the beginning of the test period were for smaller values of p, for which the chunk computation time was smaller.  The chunks served later in the test period required longer computation times, so more helpers were able to complete fewer chunks per hour.
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Overall, the test shows the ability of our system to handle a moderate number of simultaneous users over a long period of time, and to serve distriblets to helper computers not under our administrative control.  The test system is available at http://distriblets.wpi.edu.

3. Conclusions and Future Work

We have described a project to design and implement a distributed computation system written in Java to run over the World Wide Web.  We implemented the framework of the system: the distriblet applet, the Distribution Server, and the Computation Server.  A programmer wishing to prepare an application for execution using our system needs to create a Java class, following our specifications, to carry out the computation.  A user willing to help by executing part of the computation needs only to connect to the Distribution Server on the Web and then download the distriblet applet.  The distriblet downloads the arguments to use, executes the computation, and returns the results.

In the course of our work on this project, we have identified some opportunities for extensions or improvements, which could make the system more useful in the future.  One set of improvements focus on security and authentication, so that a Computation Server could authenticate the identity of a host returning results to it, and that the results being returned were correct.

To provide an incentive to users to participate, a micropayment system could be used.  Micropayment systems have been proposed as a way of collecting small payments for access to Web resources.  These same micropayment systems could be used to pay users a small amount for allowing their system to be used to download and execute distributed computations.  Thus users could use the time when their systems would otherwise be idle to earn credits to be used later for access to Web resources.  This could provide sufficient incentive for large numbers of users to make their systems available for distributed computations.  We have implemented hooks in our system to allow a micropayment system to be added in the future.
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0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Sheet2

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0



# Chunks

Time (Date/Hour)

Chunks
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Figure 3: Number of Chunks Per Hour
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Figure 1: Unique Hosts Per Hour
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Figure 2: Number of Chunks Per Hour
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