10/3/2012

Scene Management

Introduction

Graphics cards can render a lot, and fast

— But never as much or as fast as we’d like!

Updating the game world can involve a lot of

objects

— Consider Dragonfly doing collision detection

Intelligent scene management

— Squeezes more graphics performance out of limited
resources

— Provides structures for more efficient world
management

Motivation (1 of 2)

Consider game with people, in a car, on a road

People move around inside car, don’t affect the
position of car in world

But car moving in world affects position of people in
world

If massive hand picks up road > affects location of car
and people!

Exists beyond positions, too

— Consider animations or textures tied to skeletons

To make movement/drawing more efficient, structure
that supports such relationships = Scene graphs

Motivation (2 of 2)

Consider Dragonfly ‘ié

Drawing order of objects depends upon altitude,

and ViewObjects drawn last

— Can we group to make drawing more efficient?

Collisions don’t occur for SPECTRAL objects

— Can we group to make collision detection more
efficient?

To make movement/drawing more efficient,

structure that supports such relationships >

Scene graphs

Outline

(done)
(next)

Introduction

Scene graphs

Scene partitioning
Visibility calculations
Dragonfly SceneGraph

Scene Graphs

Specification of object and attribute relationships
— Spatial (where is it, i.e. position)

— Hierarchical (relationship to other objects, e.g. inside)
— Material properties (e.g. solidness)

Easy to “attach” objects together

— E.g. Riding in a vehicle

Easy to query to get objects with same properties
— E.g. All solid objects, all objects near (x, y)
Implementation does not need to be objects in tree
— Can use pointers (e.g. to textures, sprites) instead
Logical and spatial relationships

— Often goal is to make it easy to discard large swaths so do not
need to render

- Spatial data structures (next)

10/3/2012

Spatial Data Structures

* Spatial data structures store data indexed by location
— E.g. Store according to Position ... +
— Without graphics, used for queries like “Where is the nearest
hotel?” or “Which stars are near enough to influence the sun?”
* Multitude of uses in computer games
— Visibility - What can player see?
— Collision detection - Did bullet just hit wall?
— Proximity queries - Where is nearest health-pack?
¢ Can reduce “cost” with fast, approximate queries that
eliminate most irrelevant objects quickly
-> Trees with containment property enable this
— Cell of parent completely contains all cells of children
— If query fails for cell, it will fail for all children
— If query succeeds, try it for children
— Cost? - Depends on object distribution, but roughly O(log n)

Spatial Data Structures

* For games, focus on spatial data structures that partition
space into regions, or cells, of some type
— Generally, cut up space with planes that separate regions
* Uniform Grids
— Split space up into equal size cells
¢ Quad (or Oct) Trees
— Recursively split space into 4 (or 8) equal-sized regions
— Can do with sphere, too
* Binary-Space Partitioning (BSP) trees
— Recursively divide space along single, arbitrary plane
* k-dimensional trees (k-d trees)

— Recursively partition in k dimensions until termination condition
(e.g. 1 object per cell)

Uniform Grid

* Cells can be approximately size of view distance

.\\ ‘/. N .\‘k?
71 o’ v T \. C ta v
o*\ Fd v
X 4 e o ®

* Only need consider objects in cell and neighbor
* Pro: Easy to find, compute
* Con: Not effective if many objects in one cell

Quad Tree

| FOBEH | e fer
* Each node has BB LT[[B
exactly 4 children . LT .

. - il .
For 2-d space, { # g:‘v—

subdivide into 4

regions

Split until (max-1)

]
._T_.
-+

objects in each cell]
— E.g. 1 objectin

each

gia
==

Binary Space Partitioning (BSP) Tree

* Recursively sub-divide space into convex sets (/?\

LI TP Iy

<180 F 3
>180°

* For 3-d polygon scenes, can apply painter’s algorithm
— Draw leaves of tree up (back polygons written first)
— (Originally used in Doom before zbuffer to get fast rendering)
« Efficient to traverse, expensive to make so often done on
static (not moving) geometry, pre-calculated
— Can use z-buffer to merge dynamic objects with scene

¢ Instead of nodes @
being 2
dimensions
(binary), nodes are
k-dimensions

3-dimensional k-d tree. First split (red)
cuts root cell (white) into two subcells,
each of which is split (green) into two
subcells. Finally, each is split (blue)
into two sub-cells. Final eight called
leaf cells.

Cell-Portal Structures

Cell-Portal data structures dispense with

hierarchy = just store neighbor information

— Makes them graphs, not trees

* Cells described by bounding polygons

* Portals polygonal openings between cells

* Good for visibility culling algorithms, OK for
collision detection and ray-casting

* Several ways to construct

— By hand, as part of authoring process

— Automatically, starting with BSP or k-d tree and
extracting cells and portals

— Explicitly, as part of automated modeling process

10/3/2012

Cell-Portal Visibility

* Keep track of which cell

viewer isin A B
¢ Enumerate all visible]
regions
* Preprocess to identify C D
potentially visible set
(PVS) for each cell |
E F

Potentially Visible Set (PVS)

¢ PVS: Set of cells/regions/objects/polygons that man be
seen from particular cell

— Want to identify objects that can be seen

— Trade-off is memory consumption vs. accurate visibility
* Computed as pre-process

— Easy for static objects (e.g. cells)

— Need strategy to manage dynamic objects
¢ Used in various ways:

— As only visibility computation - render everything in PVS
for viewer’s current cell

— As first step - identify regions of interest, then apply more
accurate run-time algorithms

Cell-to-Cell PVS

* Cell Ain cell B's PVS if stabbing line from
portal of B to portal of A

— Stabbing line = line segment intersecting only
portals

— Neighbor cells are trivially in PVS
I
|

1

PVS for I contains:
H B,C,E.F H,J

E
sfe] e
fGE S—

A

Putting It All Together

* The “best” solution often combination
— Static things
* E.g. quad-tree for terrain
* E.g. cells and portals for interior structures
— Dynamic things

* E.g. quick reject using bounding spheres

* Balance between pre-computation and run-

time computation

(See SceneGraph in Dragonfly)

