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Operating Systems

File Systems (in a Day)
Ch 10 - 11
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File Systems

F Abstraction to disk (convenience)
– “The only thing friendly about a disk is that it 

has persistent storage.”
– Devices may be different: tape, IDE/SCSI, NFS

F Users
– don’t care about detail
– care about interface

F OS
– cares about implementation (efficiency)

File System Concepts

F Files - store the data
F Directories - organize files
F Partitions - separate collections of 

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

F Protection - allow/restrict access for files, 
directories, partitions

Files: The User’s Point of View

F Naming: how do I refer to it?
– blah, BLAH, Blah
– file.c, file.com

F API: how do I access it?
– open()
– read()
– write()

Example: Unix open()

int open(char *path, int flags [, int mode])

F path is name of file
F flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

F success, returns index
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Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
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Next up: file descriptors!

File System Implementation

F Which blocks with which file?
F File descriptors:

– Linked List
– Linked List with Index
– I-nodes

File 
Descriptor

Linked List Allocation
F Keep a linked list with disk blocks

F Good:
– Easy: remember 1 number (location)
– Efficient: no space lost in fragmentation

F Bad:
– Slow: random access bad
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F Table in memory
– faster random access
– can be large!

u 1k blocks, 500K disk

u = 2MB!

– MS-DOS FAT
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I-nodes

F Fast for small 
files

F Can hold big files
F Size?

– 4 kbyte block
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Directories

F Just like files, only have special bit set so 
you cannot modify them 

F Data in directory Maps File name to File 
descriptor 

F Tree structure directory the most flexible
– aliases allow files to appear at more than one 

location

Directories

F Before reading file, must be opened
F Directory entry provides information to get 

blocks
– disk location (block, address)
– i-node number

F Map ascii name to the file descriptor

Hierarchical Directory (Unix)

F Tree
F Entry:

– name
– inode number

F example:
/usr/bob/mbox

inode name

Hierarchical Directory (Win/FAT)

F Tree
F Entry:

– name - date
– type (extension) - block number (w/FAT)
– time

name type attrib time date block size
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Disk Space Management

F n bytes
– contiguous
– blocks

F Similarities with memory management
– contiguous is like segmentation

u but moving on disk very slow!

u so use blocks

– blocks are like paging
u how to choose block size?

Choosing Block Size

F Large blocks
– wasted space (internal fragmentation)

F Small blocks
– more seek time since more blocks

Data Rate

Disk Space
Utilization

Block size

Keeping Track of Free Blocks
F Two methods

– linked list of disk blocks
u one per block or many per block

– bitmap of disk blocks

F Linked List of Free Blocks (many per block)
– 1K block, 16 bit disk block number

u = 511 free blocks/block
u 200 MB disk needs 400 blocks = 400k

F Bit Map
u 200 MB disk needs 20 Mbits 
u 30 blocks = 30 K
u 1 bit vs. 16 bits

(note, these are 
stored on the disk)

Tradeoffs

F Only if the disk is nearly full does linked 
list scheme require fewer blocks

F If enough RAM, bitmap method preferred
F If only 1 “block” of RAM, and disk is full, 

bitmap method may be inefficient since 
have to load multiple blocks
– linked list can take first in line

File System Performance
F Disk access 100,000x slower than memory

– reduce number of disk accesses needed!

F Block/buffer cache
– cache to memory

F Full cache?  FIFO, LRU, 2nd chance …
– exact LRU can be done

F LRU inappropriate sometimes
– crash w/i-node can lead to inconsistent state
– some rarely referenced (double indirect block)

Outline

F Files 4
F Directories 4
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F Misc ←

– partitions (fdisk, mount)
– maintenance
– quotas
– Linux
– WinNT
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Partitions
F mount, unmount

– load “super-block”
– pick “access point” in file-system

F Super-block
– file system type
– block Size
– free blocks
– free inodes

/

usr
home tmp

Partitions: fdisk

F Partition is large group of sectors allocated 
for a specific purpose
– IDE disks limited to 4 physical partitions
– logical partition inside physical partition

F Specify number of sectors to use
F Specify type

– magic number recognized by OS

File System Maintenance
F Format:

– create file system structure: super block, inodes
– format (Win), mke2fs (Linux)

F “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)
– add to “bad-blocks” list (file system can ignore)

F Defragment
– arrange blocks efficiently

F Scanning (when system crashes)
– lost+found, correcting file descriptors...

Linux Filesystem: ext2fs
F “Extended 

(from minix) 
file system 
vers 2”

F Uses inodes
– mode for file, 

directory, 
symbolic link 
...

Linux filesystem: blocks
F Default is 1 Kb blocks

– small!

F For higher performance
– performs I/O in chunks (reduce requests)
– clusters adjacent requests (block groups)

F Group has:
– bit-map of 
free blocks 
and inodes
– copy of 
super block

Linux Filesystem: directories

F Special file with names and inodes


