
1

Operating Systems

File Systems (in a Day)
Ch 10 - 11

Outline

F Files ←
F Directories
F Disk space management
F Misc

File Systems

F Abstraction to disk (convenience)
– “The only thing friendly about a disk is that it 

has persistent storage.”
– Devices may be different: tape, IDE/SCSI, NFS

F Users
– don’t care about detail
– care about interface

F OS
– cares about implementation (efficiency)

File System Concepts

F Files - store the data
F Directories - organize files
F Partitions - separate collections of 

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

F Protection - allow/restrict access for files, 
directories, partitions

Files: The User’s Point of View

F Naming: how do I refer to it?
– blah, BLAH, Blah
– file.c, file.com

F API: how do I access it?
– open()
– read()
– write()

Example: Unix open()

int open(char *path, int flags [, int mode])

F path is name of file
F flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

F success, returns index



2

Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
User Space

System Space

stdin
stdout
stderr

...

0
1
2
3

File Structure

...

...

File 
Descriptor

(where 
blocks are)(attributes)(index)

File System Implementation
Process

Descriptor

Open
File

Pointer 
Array

Open File
Table

File Descriptor
Table

(in memory
copy,

one per 
device)

(per process)

Disk

File sys info

File
descriptors

Copy fd
to mem

Directories

Data

Next up: file descriptors!

File System Implementation

F Which blocks with which file?
F File descriptors:

– Linked List
– Linked List with Index
– I-nodes

File 
Descriptor

Linked List Allocation
F Keep a linked list with disk blocks

F Good:
– Easy: remember 1 number (location)
– Efficient: no space lost in fragmentation

F Bad:
– Slow: random access bad

File
Block

0

File
Block

1

File
Block

2
Physical

Block

null

4 7 2

File
Block

0

File
Block

1

null

6 3

Linked List Allocation with 
Index

F Table in memory
– faster random access
– can be large!

u 1k blocks, 500K disk

u = 2MB!

– MS-DOS FAT

Physical
Block

0

1

null2

null3

74

5

36

27

I-nodes

F Fast for small 
files

F Can hold big files
F Size?

– 4 kbyte block

D
is

k 
A

dd
re

ss
es

(d
at

a 
bl

oc
ks

)

i-node

attributes

single
indirect block

double indirect
block

triple indirect
block



3

Outline

F Files 4
F Directories ←
F Disk space management
F Misc

Directories

F Just like files, only have special bit set so 
you cannot modify them 

F Data in directory Maps File name to File 
descriptor 

F Tree structure directory the most flexible
– aliases allow files to appear at more than one 

location

Directories

F Before reading file, must be opened
F Directory entry provides information to get 

blocks
– disk location (block, address)
– i-node number

F Map ascii name to the file descriptor

Hierarchical Directory (Unix)

F Tree
F Entry:

– name
– inode number

F example:
/usr/bob/mbox

inode name

Hierarchical Directory (Win/FAT)

F Tree
F Entry:

– name - date
– type (extension) - block number (w/FAT)
– time

name type attrib time date block size

Outline

F Files 4
F Directories 4
F Disk space management ←
F Misc



4

Disk Space Management

F n bytes
– contiguous
– blocks

F Similarities with memory management
– contiguous is like segmentation

u but moving on disk very slow!

u so use blocks

– blocks are like paging
u how to choose block size?

Choosing Block Size

F Large blocks
– wasted space (internal fragmentation)

F Small blocks
– more seek time since more blocks

Data Rate

Disk Space
Utilization

Block size

Keeping Track of Free Blocks
F Two methods

– linked list of disk blocks
u one per block or many per block

– bitmap of disk blocks

F Linked List of Free Blocks (many per block)
– 1K block, 16 bit disk block number

u = 511 free blocks/block
u 200 MB disk needs 400 blocks = 400k

F Bit Map
u 200 MB disk needs 20 Mbits 
u 30 blocks = 30 K
u 1 bit vs. 16 bits

(note, these are 
stored on the disk)

Tradeoffs

F Only if the disk is nearly full does linked 
list scheme require fewer blocks

F If enough RAM, bitmap method preferred
F If only 1 “block” of RAM, and disk is full, 

bitmap method may be inefficient since 
have to load multiple blocks
– linked list can take first in line

File System Performance
F Disk access 100,000x slower than memory

– reduce number of disk accesses needed!

F Block/buffer cache
– cache to memory

F Full cache?  FIFO, LRU, 2nd chance …
– exact LRU can be done

F LRU inappropriate sometimes
– crash w/i-node can lead to inconsistent state
– some rarely referenced (double indirect block)

Outline

F Files 4
F Directories 4
F Disk space management 4
F Misc ←

– partitions (fdisk, mount)
– maintenance
– quotas
– Linux
– WinNT



5

Partitions
F mount, unmount

– load “super-block”
– pick “access point” in file-system

F Super-block
– file system type
– block Size
– free blocks
– free inodes

/

usr
home tmp

Partitions: fdisk

F Partition is large group of sectors allocated 
for a specific purpose
– IDE disks limited to 4 physical partitions
– logical partition inside physical partition

F Specify number of sectors to use
F Specify type

– magic number recognized by OS

File System Maintenance
F Format:

– create file system structure: super block, inodes
– format (Win), mke2fs (Linux)

F “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)
– add to “bad-blocks” list (file system can ignore)

F Defragment
– arrange blocks efficiently

F Scanning (when system crashes)
– lost+found, correcting file descriptors...

Linux Filesystem: ext2fs
F “Extended 

(from minix) 
file system 
vers 2”

F Uses inodes
– mode for file, 

directory, 
symbolic link 
...

Linux filesystem: blocks
F Default is 1 Kb blocks

– small!

F For higher performance
– performs I/O in chunks (reduce requests)
– clusters adjacent requests (block groups)

F Group has:
– bit-map of 
free blocks 
and inodes
– copy of 
super block

Linux Filesystem: directories

F Special file with names and inodes


