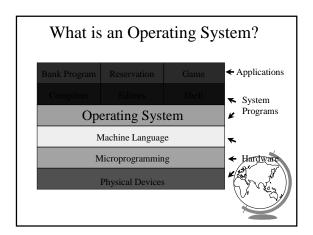


Operating System

Introduction

Topics


- What is an OS?
- OS History
- OS Concepts
- OS Structures

Let's Get Started!

- What are some OSes you know?
 - Guess if you are not sure
- Pick an OS you know:
 - What are some things you like about it?
 - What are some things you don't like about it?

What is an Operating System?

- An Extended Machine (Top-down)
 - Transforming new resource
 - + ex: Win98 device manager
- A Resource Manager (Bottom-up)
 - Multiplexing illusion of several resources
 - + ex: browse the web AND read email
 - Scheduling deciding who gets what when
 + ex: compile fast OR edit fast
- Why have an OS?
 - Convenient and Efficient
 - + Programming hardware difficult
 - + Idle hardware "wasteful"

Topics

- What is an OS? (done)
- OS History (next)
- OS Concepts
- OS Structures

Where in the Book are we?

- Ch 1-2 by Friday
 - Reading details on course Web page
 - Ch 1, brief, alternate viewpoint
 - Ch 2, computer architecture review
- Ch 3 by Monday
 - Ch 3, system structure
- Timeline on Web page
 - Proj 0 due by Tuesday
 - Get a group!

OS History

- Helps understand key requirements
 - Not one brilliant design
 - + (despite what Gates or Torvalds might say)
 - Fixed previous problems, added new ones
 - Tradeoffs
- Closely tied to:
 - Hardware history
 - User history

Hardware History 1981 1999 Factor 250 250 Power \$/Power \$100K \$45 2200 Memory 128K 128M Disk Capacity 1000 10M 10G Net Bandwidth 9600b/s 155Mb/s 15K Users / Mach. 10s • Comments? Change!

OS History

- Supplement to book
- My version is a brief narrative

Hardware Very Expensive Humans Cheap

- Single program execution (no OS)
- Hardwire "programming"
- Programming slow, not "offline"!
 - Punch cards

Hardware Very Expensive Humans Cheap

- Punch cards
- Fortran or assembler
- Waste computer time walking!
 - Batch programs on tape

Hardware Very Expensive Humans Cheap

- Programs read in from tape
- Two applications:
 - Scientific
 - Data processing
- CPU idle during I/O!
 - Multiprogramming with partitions
 - Spooling as jobs finished

Hardware is Cheap Humans Expensive

- Turn around time 1/2 day
- Programmer time wasted!
 - "Sigh. In the good old days...."
 - Time-sharing
 - Multics (sorta)
 - New problems
 - + response time
 - + thrashing
 - + file-systems

Hardware Very Cheap Humans Very Expensive

- Personal computers
 - Network operating systems
 - Distributed operating systems
- OSes today
 - size
 - + small == 1000K
 - + large == 10,000K
 - need to evolve quickly
 - + hardware upgrades, new user services, bug fi
 - efficient and/or modular kernels

Windows NT/2000 History

- 1988, v1
 - split from joint work with IBM OS/2
 - Win32 API
- 1990, v3.1
 - Server and Workstation versions
- 1997(?), v4
- Win95 interface
- Graphics to kernel
- More NT licenses sold than all Unix combin

Windows NT/2000 History

- 2000 v5, called "Windows 2000"
 - Micro-kernel
 - Multi-user (with terminal services)
- Four versions (all use same core code)
 - Professional
 - + desktop
 - Server and Advanced Server
 - + Client-server application servers
 - Datacenter Server
 - + Up to 32 processors, 64 GB RAM

Windows NT/2000 Today

- Microsoft has 80% to 90% of OS market
 mostly PC's
- 800 MHz Intel Pentium
- NT aiming at robust, server market
 - network, web and database
- Platforms
 - Intel 386+ only
- NT is 12,000,000 lines of code
- 2000 is 18,000,000 lines of code

Linux History

- Open Source
 - Release Early, Release Often, Delegate
 - "The Cathedral or the Baazar"
- Bday 1991, Linus Torvalds, 80386 processor
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- 1994, v1.0
 - networking (Internet)
 - enhanced file system (over Minix)
 - many devices, dynamic kernel modules

Linux History

- Development convention
 - Odd numbered minor versions "development"
 - Even numbered minor versions "stable"
- 1995, v1.2
 - more hardware
 - 8086 mode (DOS emulation) included
 - Sparc, Alpha, MIPS support started
- 1996, v2.0
 - multiple architectures, multiple proces
 - threads, memory management

Linux Today

- v2.2
- 3,000,000 lines of code
- 7-10 million users
- Estimated growth 25%/year through 2003
 - all others, 10% combined

Outline

- Operating System Concepts
 - Processes
 - Files
 - System Calls
 - Shells
- Operating System Structure
 - Simple Systems
 - Virtual Machines
 - Micro Kernels

The Process

- Program in execution
- Running -> Suspended -> Running
- Example: the Shell
- Process "Tree"
- Signals
- UID (GID)
- (Two weeks)

Files

bob

- Store data on disk
- Directory "Tree"
- Working directory
- Protection bits
 - − 9 in Unix: **rwx bits**, ex: rwxr-x--x
- Abstraction of I/O device
- terminal, printer, network, modem
- Pipe
- (1 day)

sue

System Calls

- Way processes communicate with OS
- example:

write(file, string, size)

- OS specific!
- POSIX (1980s)
 - Portable Operating System (unIX-ish)
- (Most of the projects use them)
- (One of the projects will add system calls

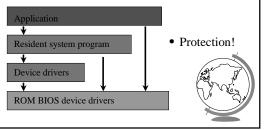
Shells

- User's interface to OS
- Simple commands

"cd", "cat", "top"

• Modifiers '&', '|', '>'

• (Hey, do some process and shell examples!)


Outline

- Operating System Structure
 - Simple Systems
 - Virtual Machines
 - Micro Kernels

Simple Systems

- Started small and grew, no hardware support
- MS-DOS

Simple Systems

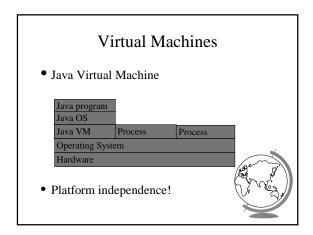
• Unix (see /vmunix)

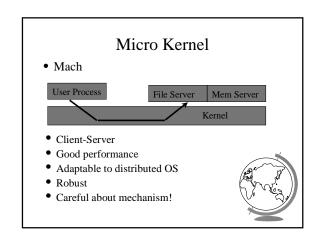
Applications

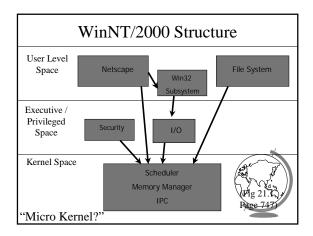
Signals, File Sys, Swapping, Scheduling .

Terminal Device Memory

- "The Big Mess"
- Some move towards a more modular kerne


Virtual Machines


• IBM VM/370 → VMWare


Process	Process	Process
Process	Process	Process
Operating Sys	Operating Sys	Operating Sys
Virtual Machine		
Hardware		


- Complete protection
- OS development, emulation
- Performance!

