
1

Operating Systems

Input/Output Devices
(Ch 13.3, 13.5; 14.1-14.3)

Introduction

• One OS function is to control devices
– significant fraction of code (80-90% of Linux)

• Want all devices to be simple to use
– convenient
– ex: stdin/stdout, pipe, re-direct

• Want to optimize access to device
– efficient
– devices have very different needs

Outline

• Introduction (done)
• Hardware ←←←←
• Software
• Specific Devices

– Hard disk drives
– Clocks
– Terminals

Hardware

• Device controllers
• Types of I/O devices
• Direct Memory Access (DMA)

Device Controllers

• Mechanical and electronic component

CPU Memory
Disk

Controller
Printer

Controller

System bus

The quick brown
fox jumped over
the lazy dogs. The
quick brown fox...

• OS deals with electronic
– device controller

Mechanical

Electronic

I/O Device Types

• block - access is independent
– ex- disk

• character - access is serial
– ex- printer, network

• other
– ex- clocks (just generate interrupts)

2

Direct Memory Access (DMA)
• Very Old

– Controller reads from device
– OS polls controller for data

• Old
– Controller reads from device
– Controller interrupts OS
– OS copies data to memory

• DMA
– Controller reads from device
– Controller copies data to memory
– Controller interrupts OS

Outline

• Introduction (done)
• Hardware (done)
• Software ←←←←
• Specific Devices

– Hard disk drives
– Clocks
– Terminals

I/O Software Structure

• Layered User Level Software
Device Independent

Software

Device Drivers

Interrupt Handlers

Hardware

(Talk from bottom up)

Interrupt Handlers
CPU

1) Device driver initiates
I/O

(CPU executing,
checking for interrupts
between instructions)

3) Receives interrupt,
transfer to handler

4) Handler processes
(Resume processing)

I/O Controller
1) Initiates I/O

(I/O device processing
request)

2) I/O complete.
Generate interrupt.

Interrupt Handler
• Make interrupt handler as small as possible

– interrupts disabled
– Split into two pieces

• First part does minimal amount of work
– defer rest until later in the rest of the device driver
– Windows: “deferred procedure call” (DPC)
– Linux: “top-half” handler

• Second part does most of work
• Implementation specific

– 3rd party vendors

Device Drivers
• Device dependent code

– includes interrupt handler
• Accept abstract requests

– ex: “read block n”
• See that they are executed by device hardware

– registers
– hardware commands

• After error check
– pass data to device-independent software

3

Device-Independent I/O Software
• Much driver code independent of device
• Exact boundary is system-dependent

– sometimes inside for efficiency
• Perform I/O functions common to all devices
• Examples:

– naming protection block size
– buffering storage allocation error reporting

User-Space I/O Software

• Ex: count = write(fd, buffer, bytes);
• Put parameters in place for system call
• Can do more: formatting

– printf(), gets()

• Spooling
– spool directory, daemon
– ex: printing, USENET

I/O System Summary

User Processes
Device Independent

Software

Device Drivers

Interrupt Handlers

Hardware

I/O Request

I/O Reply

Make I/O call; Format I/O;
Spooling

Naming, protection,
blocking, buffering,

allocation

Setup device registers;
check status

Wakeup driver when
I/O completed

Perform I/O operation

Outline

• Introduction (done)
• Hardware (done)
• Software (done)
• Specific Devices ←←←←

– Hard disk drives
– Clocks
– Terminals

Hard Disk Drives (HDD)

• Controller
often on disk

• Cache to
speed access

HDD - Zoom
– Platters

+ 3000-10,000 RPM
(floppy 360 RPM)

– Tracks
– Cylinders
– Sectors

Ex: hdb: Conner Peripherals 540MB
CFS540A, 516MB w/64kB Cache, CHS=1050/16/63

– 1050 cylinders (tracks), 16 heads (8 platters), 63 sectors per track

• Disk Arms all move together
• If multiple drives

– overlapping seeks but one read/write at a time

4

Disk Arm Scheduling

• Read time:
– seek time (arm to cylinder)
– rotational delay (time for sector under head)
– transfer time (take bits off disk)

• Seek time dominates
• How does disk arm scheduling affect seek?

First-Come First-Served (FCFS)

• 14+13+2+6+3+12+3=53
• Service requests in order that they arrive
• Little can be done to optimize
• What if many requests?

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
Shortest Seek First (SSF)

• 1+2+6+9+3+2 = 23
• Suppose many requests?

– Stay in middle
– Starvation!

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Elevator (SCAN)

• 1+2+6+3+2+17 = 31
• Usually, a little worse avg seek time than SSF

– But avoids more fair, avoids starvation
• C-SCAN has less variance
• Note, seek getting faster, rotational not

– Someday, change algorithms

x x x x x x x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e

Redundant Array of Inexpensive
Disks (RAID)

• For speed
– Pull data in parallel

• For fault-tolerance
– Example: 38 disks, form 32 bit word, 6 check bits
– Example: 2 disks, have exact copy on one disk

CPU

Error Handling

• Common errors:
– programming error (non-existent sector)
– transient checksum error (dust on head)
– permanent checksum error (bad block)
– seek error (arm went to wrong cylinder)
– controller error (controller refuses command)

5

Clock Hardware

• Time of day to time quantum

Crystal Oscillator

Pulse from 5 to 300 MHz

Decrement counter
when == 0

- generate interrupt

Holding register to
load counter
Can control clock ticks

Clock Software Uses

• time of day
– 64-bit, in seconds, or relative to boot

• interrupt after quantum
• accounting of CPU usage

– separate timer or pointer to PCB
•alarm() system calls

– separate clock or linked list of alarms with ticks

