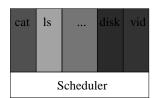


Design Technique: State Machines

- Process states
- Move from state to state based on events
 - Reactive system
- Can be mechanically converted into a program
- Other example:
 - string parsing, pre-processor



Unix Process Creation

- System call: fork()
 - creates (nearly) identical copy of process
 - return value different for child/parent
- System call: exec()
 - over-write with new process address space
- Shell
 - uses fork() and exec()
 - simple!
- (Hey, you, show demos!)

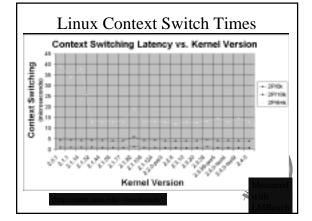
Process Scheduler

- All services are processes
- Small scheduler handles interrupts, stopping starting processes

Process Control Block

- Each process has a PCB
 - state
 - program counter
 - registers
 - memory management
 - ...
- OS keeps a table of PCB's, one per process
- (Hey! Simple Operating System, "system

sterch")


Interrupt Handling

- Stores program counter (hardware)
- Loads new program counter (hardware)
 - jump to interrupt service procedure
- Save PCB information (assembly)
- Set up new stack (assembly)
- Set "waiting" process to "ready" (C)
- Scheduler (C)
 - Newly awakened process
 + Often called a context-switch
 - Previously running process

Context Switch

- Pure overhead
- So ... fast, fast, fast
 - typically 1 to 1000 microseconds
- Sometimes special hardware to speed up
- Real-Time wants worse case
 - RT Linux worse case sub 20 microseconds
- How to decide when to switch contexts to bother process is process scheduling

Processes in Linux

- PCB is in struct task_struct
 - states: RUNNING, INTERRUPTIBLE, UNINTERRUPTIBLE
 - priority: when it runs
- counter: how long it runs
- Environment inherited from parent
- NR_TASKS max, 2048
 - 1/2 is max per user

Processes in NT

- States: ready, standby (first in line), running, waiting, transition, terminated
- priority when it runs
- Processes are composed of *threads* (revisit threads after scheduling)

