Operating Systems

Memory Management
(Ch4:414.2)

Overview

* Provide Services (done)

— processes (done)

—files (briefly here, more in cs4513)
* Manage Devices

— processor (done)

— memory (next!) s

—disk (done &fter files)

Simple Memory Management

* Oneprocessinmemory, usingitall
— each program needs /O drivers
— until 1960

1/O drivers
/
RAM @

Simple Memory Management

* Small, protected OS, drivers
- DOS

ROM
RAM I RAM RAM

® “Mono-programming” -- No multiprocessi
- Early efforts used “ Swapping”, but §

Multiprocessing w/Fixed Partitions
Simple!

« Unequal queues * Waste largt
* Skip small jok

| Hey, processes can be in different memory locations!

@ OF-

Address Binding

* Compile Time
— maybe absolute binding (. con)
® Link Time
— dynamic or static libraries
* Load Time
— relocatable code
* RunTime
— relocatable memory segments
— overlays
- paging

Compile

Normal Linking and Loading

gce gcc
. —
ar Linker X Window code:
- 500K minimum
- 450K ljbranig
L oader

Run-Time Dynamic Linking

Linker <

Save disk space.
Startup fast.
Might n al.

Load Time Dynamic Linking

* Save disk space.

* Libraries move?
*Moving code?

* Library versigps?

Memory Linking Performance
Comparisons

Linking Disk Load Run Run Run Time
Method Space Time Time Time (0O used)
2 used

Design Technique: Static vs. Dynamic

* Static solutions
— compute ahead of time
— for predictable situations
¢ Dynamic solutions
— compute when needed
— for unpredictable situations

* Some Situations use dynamic because
too restrictive (mal | oc)

* ex: memory allocation, type checkin

Logical vs. Physical Addresses

* Compile-Time + Load Time addresses same
* Runtimeaddressesdifferent

Logical Relocation
Address | Register

346
®

MMU

® User goes from 0 to max
® Physica goesfrom R+0 to R+mex

Relocatable Code Basics

* Allow logical addresses
* Protect other processes

=90
*no MMU

error

® Addresses must be contiguous!

Variable-Sized Partitions

* |dea: want to remove “wasted” memory that
isnot needed in each partition

* Definition:
— Hole - ablock of available memory
— scattered throughout physical memory

* New process allocated memory from
largeenoughtofitit

Variable-Sized Partitions

* OSkeepstrack of:
— alocated partitions
— free partitions (holes)
— queues!

Memory Request?

* What if arequest for additional memory?

I\>ma|oo(20k)9

Internal Fragmentation

* Have some“empty” space for each
processes

Allocated to A Room for growth

® |nternal Fragmentation - allocated r@'
may be dlightly larger than request
memory and not being used.

External Fragmentation

* Externa Fragmentation - total memory
space existsto satisfy request but it isnot
contiguous

“But, how much does this matter?”

50k

100k

Analysis of External Fragmentation

* Assume

— system at equilibrium

— processin middle

— if N processes, 1/2 time process, 1/2 hole
+==>1/2 N holes!

— Fifty-percentrule

— Fundamental:
+ adjacent holes combined
+ adjacent processes not combined

Compaction
¢ Shuffle memory contentsto place all free
memory together in onelarge block

* Only if relocation dynamic!
* Samel/O DMA problem @ ®)

50k
90k
125k
60k
100k

Cost of Compaction

50k

90k

60k

100k
[

® 128 MB RAM, 100nsed/access
= 1.5 secondsto compact!
® Disk much dower!

Solution?

¢ Want to minimize external fragmentation
— Large Blocks
— But internal fragmentation!

* Tradeoff

— Sacrifice some internal fragmentation for
reduced external fragmentation

— Paging

Where Are We?
* Memory Management
— fixed partitions (done)
— linking and loading (done)
— variablepartitions (done)
* Paging -

* Misc

Paging

* |ogical address space noncontiguous,
process gets memory wherever available
— Divide physical memory into fixed-size blocks

+ sizeisapower of 2, between 512 and 8192 bytes
+ called Frames

— Divide logical memory into bocks of same size,,
+ called Pages

Paging
* Addressgenerated by CPU dividedinto:
— Page number (p) - index to page table

+ page table contains base address of each pagein
physical memory (frame)

— Page offset (d) - offset into page/frame

page table

Paging Example
* Pagesize4bytes

Paging Example

Offset 000
001
010
011
100
101
110

111

Page Table

Physical
Memory Memory

Paging Hardware

* address space 2™
* pageoffset 2"
* pagenumber2™n

iie number iie of fset

mn n

® note: not losing any bytes!

0
* Memory size 32 bytes (8 pages) 1
2
3
4
5 /

6
Logical Page Table 7

Memory P

M

Paging Example

¢ Consder:
— Physical memory = 128 bytes
— Physical address space = 8 frames
* How many bitsin an address?
* How many bitsfor page number?
¢ How many bitsfor page offset? .

* Canalogical address space have onl
pages? How bigwould the page tabl

Another Paging Example

® Consider:
— 8bitsin an address
— 3bitsfor the frame/page number
* How many bytes (words) of physical memory?
* How many frames are there?
* How many bytesisapage?
* How many bitsfor page offset?
* |f aprocess pagetableis 12 bits, how m
logical pages does it have?

Page Table Example =7

0
1

Process B Page Table

iie number iie offset

mn=3 n=4
0
1

ProcessA Page Table

Paging Tradeoffs

* Advantages
— no external fragmentation (no compaction)
— relocation (now pages, before were processes)
* Disadvantages
— internal fragmentation
+ consider: 2048 byte pages, 72,766 byte proc
— 35 pages + 1086 bytes = 962 bytes
+ avg: 1/2 page per process 4
+ small pages!
— overhead
+ pagetable/ process (context switch + sp
+ lookup (especially if page to disk)

Implementation of Page Table

* Pagetable kept inregisters

* Fast!

¢ Only good when number of framesissmall
* Expensive!

I mplementation of Page Table

* Pagetable kept in main memory
* Page Table Base Register (PFTBR)

0
1

Logical pageTaple
Memory

* Page TableLength

* Two memory accesses per data/inst a
— Solution? Associative Registers

Associative Registers

10-20% mem time

page frame
number number hit

associative
registers

pagetable

Associative Register Performance

* Hit Ratio - percentage of timesthat apage
number isfound in associative registers

Effective accesstime=
hit ratio x hit time + miss ratio x misstime
* hit time =reg time + memtime

* misstime=reg time + memtime* 2

* Example:

— 80% hit ratio, reg time = 20 nanosec,
=100 nanosec

/
/I! 1
it "
—.80* 120 +.20* 220 = 140 nanosecon)

Protection

* Protection bits with each frame
® Storein pagetable

* Expand to more perms Protection

Logical Page Table
Memory

Large Address Spaces

* Typical logical address spaces:
— 4 Gbytes=> 2% address bits (4-byte address)
* Typica pagesize:
— 4Kbytes= 2% bits
* Pagetable may have:
— 2%2/212=22=1million entries
* Each entry 3 bytes=> 3MB per process!
* Do not want that al in RAM ¢
* Solution? Page the page table
— Multilevel paging

Multilevel Paging
iie number iiie offset

10 10 12
Logical
Memory Outer Page

Table

Page Table
Inverted Page Table

* Pagetable mapsto physical addresses

* Still need page per process--> backirng i
* Memory accesseslonger! (search + SWap

Multilevel Paging Translation

outer page
table inner page
table

Memory View

* Paging lost users' view of memory

* Need“logical” memory unitsthat grow and
contract

ex: stack,
shared library

* Solution?
* Segmentation!

Segmentation Segmentation
* Logical address. <segment, offset>

* Segment table - mapstwo -dimensional user
defined addressinto one-dimensional
physical address
— base - starting physical location
— limit - length of segment

* Hardware support
— Segment Table Base Register
— Segment Table Length Register

(“Er, what have we gained?")
- Paged segments!

Memory Management Outline Memory Management in WinNT
* Basic (done)
— Fixed Partitions (done) * 32 bit addresses (2%? = 4 GB address space)
— Variable Partitions (done) — Upper 2GB shared by all processes (kernel mode)
* Paging (done) — Lower 2GB private per process
— Basic (done) * Pagesizeis4KB (2%?, so offset is 12 hits)
— Enhanced (done) * Multilevel paging (2 levels)
* Specific o ! — 10 hitsfor outer page table (page directory) !
—WinNT — 10 bitsfor inner page table
— Linux — 12 bitsfor offset
* Linking and Loading

Memory Management in WinNT Memory Management in Linux
* Each page-table entry has 32 bits * Pagesize:

— only 20 needed for addresstranslation — AlphaAXP has 8 Kbyte page

— 12 bits“left-over”
e Characteristics — Intel x86 has4 Kbyte page

— Access: read only, read-write e Multilevel paging (3 Ievels)

— States: valid, zeroed, free ... — Makes code more portable
* |nverted pagetable 4

intst table entri — Even though no hardware support on x86}
— pointsto e eentries
- ﬁst of freé]??ames + “middle-layer” defined to be 1

