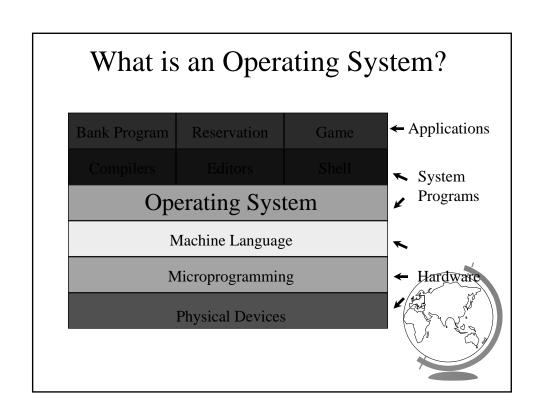


Operating System

Introduction (Ch 1.1-1.8, 2.1-2.8)

Topics


- What is an OS?
- OS History
- OS Concepts
- OS Structures

Let's Get Started!

- What are some OSes you know?
 - Guess if you are not sure
- Pick an OS you know:
 - What are some things you like about it?
 - What are some things you don't like about it?

What is an Operating System?

- An Extended Machine (Top-down)
 - Transforming new resource
 - + ex: WinXP device manager
- A Resource Manager (Bottom-up)
 - Multiplexing illusion of several resources
 - + ex: browse the web AND read email
 - Scheduling deciding who gets what when
 - + ex: compile fast OR edit fast
- Why have an OS?
 - Convenient and Efficient
 - + Programming hardware difficult
 - + Idle hardware "wasteful"

Topics

- What is an OS? (done)
- OS History (next)
- OS Concepts
- OS Structures

OS History

- Helps understand key requirements
 - Not one brilliant design
 - + (despite what Gates or Torvalds might say)
 - Fixed previous problems, added new ones
 - Tradeoffs
- Closely tied to:
 - Hardware history
 - User history

Hardware History

	1981	2005	Factor
Power	1	1600	1600
\$/Power	\$100K	\$1	100000
Memory	128K	2G	15000
Disk Capacity	10M	10G	1000
Net Bandwidth	9600b/s	1Gb/s	100000
Users / Mach.	10s	<=1	10

• Comments? Change!

OS History

- Supplement to book
- My version is a brief narrative

Hardware Very Expensive Humans Cheap

- Single program execution (no OS)
- Hardwire "programming"
- Programming slow, not "offline"!
 - Punch cards

Hardware Very Expensive Humans Cheap

- Punch cards
- Fortran or assembler
- Waste computer time walking!
 - Batch programs on tape

Hardware Very Expensive Humans Cheap

- Programs read in from tape
- Two applications:
 - Scientific
 - Data processing
- CPU idle during I/O!
 - Multiprogramming with partitions
 - Spooling as jobs finished

Hardware is Cheap Humans Expensive

- Turn around time 1/2 day
- Programmer time wasted!
 - "Sigh. In the good old days...."
 - Time-sharing
 - Multics (sorta)
 - New problems
 - + response time
 - + thrashing
 - + file-systems

Hardware Very Cheap Humans Very Expensive

- Personal computers
 - Network operating systems
 - Distributed operating systems
- OSes today
 - size
 - + small == 1 million
 - + large == 10 million
 - need to evolve quickly
 - + hardware upgrades, new user services, bug fixes
 - efficient and/or modular kernels

Windows History

- 1988, v1
 - split from joint work with IBM OS/2
 - Win32 API
- 1990, v3.1
 - Server and Workstation versions
- 1997, v4
 - Win95 interface
 - Graphics to kernel
 - More NT licenses sold than all Unix combined

Windows History

- 2000 v5, called "Windows 2000"
 - Micro-kernel
 - Multi-user (with terminal services)
- Four versions (all use same core code)
 - Professional
 - + desktop
 - Server and Advanced Server
 - + Client-server application servers
 - Datacenter Server
 - + Up to 32 processors, 64 GB RAM

Windows Today

- Microsoft has 80% to 90% of OS market
 - mostly PC's (although desktop PCs quite powerful!)
- Aiming at robust, server market
 - network, web and database
- Platforms
 - Intel 386+ only
- Lines of code
 (http://en.wikipedia.org/wiki/Source_lines_of_code)
 - WinNT 4 million
 - Win2000 35 million
 - WinXP 40 million

Linux History

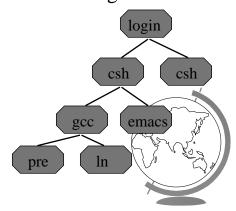
- Open Source
 - Release Early, Release Often, Delegate
 - "The Cathedral or the Bazaar"
- Bday 1991, Linus Torvalds, 80386 processor
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- 1994, v1.0
 - networking (Internet)
 - enhanced file system (over Minix)
 - many devices, dynamic kernel modules

Linux History

- Development convention
 - Odd numbered minor versions "development"
 - Even numbered minor versions "stable"
- 1995, v1.2
 - more hardware
 - 8086 mode (DOS emulation) included
 - Sparc, Alpha, MIPS support started
- 1996, v2.0
 - multiple architectures, multiple processo
 - threads, memory management

Linux Today

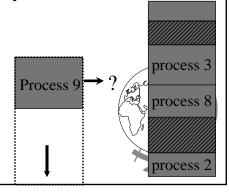
- v2.6
- About 6 million lines of code
 - (Sun Solaris, Unix-like, about the same)
- Was estimated growth 25%/year through 2003
 - all others, 10% combined
- Not clear if true
 - (see http://www.w3schools.com/browsers/browsers_stats.asp)
- General shift from Win2k to WinXP
 - Microsoft still around 90%


Outline

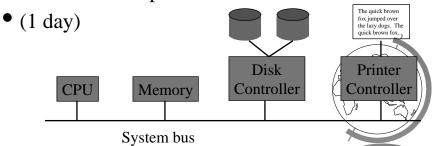
- Operating System Concepts (Ch 3) ←
 - Processes
 - Memory management
 - Input/Output
 - Files
 - System Calls
 - Shells
- Operating System Structures

The Process

- Program in execution
- Running -> Suspended -> Running
- Example: the Shell
- Process "Tree"
- Signals
- UID (GID)
- (Two weeks)



- One chunk of physical memory
- Needs to be shared with all processes
 - multiprocessing
- 32 bit architecture, 2^{32} bytes \rightarrow 4GB!


- virtual memory

• (Two weeks)

Input/Output

- OS manage resources, including other devices
- Significant fraction of code
 - Up to 90%
- Want to be simple to use

Files

- Store data on disk
- Directory "Tree"
- Working directory
- Protection bits
 - 9 in Unix: **rwx bits**, ex: rwxr-x--x
- Abstraction of I/O device
 - terminal, printer, network, modem
- Pipe
- (1 day, 1 week in cs4513)

sue

fun

root

www

bob

3013

System Calls

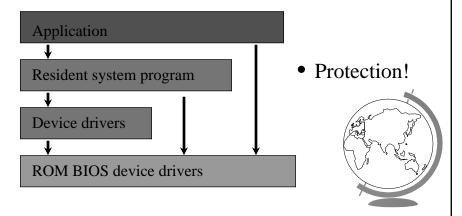
- Way processes communicate with OS
- example:

write(file, string, size)

- OS specific!
- POSIX (1980s)
 - Portable Operating System (unIX-ish)
- (Most of the projects use them)
- (One of the projects will add system calls

Shells

- User's interface to OS
- Simple commands "cd", "cat", "top"
- Modifiers '&', '|', '>'
- (Hey, do some process and shell examples!


Outline

- Operating System Structure (Ch 3.5-3.6) ←
 - Simple Systems
 - Virtual Machines
 - Micro Kernels

Simple Systems

- Started small and grew, no hardware support
- MS-DOS

Simple Systems

• Unix (see /vmunix)

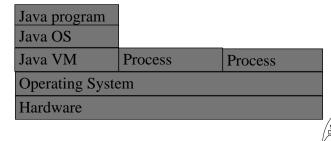
Applications

Signals, File Sys, Swapping, Scheduling ...

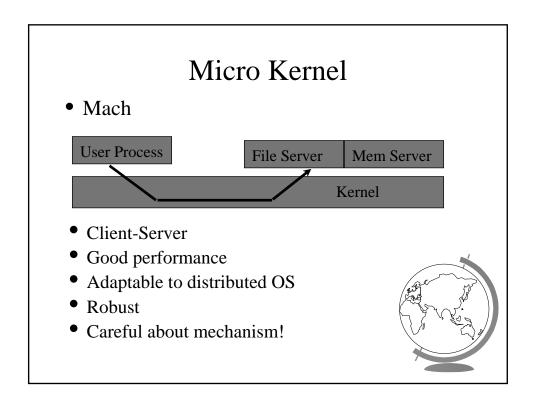
Terminal Device Memory

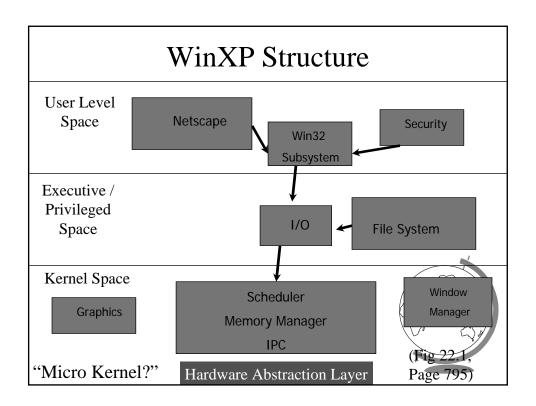
- "The Big Mess"
- Some move towards a more modular kernel

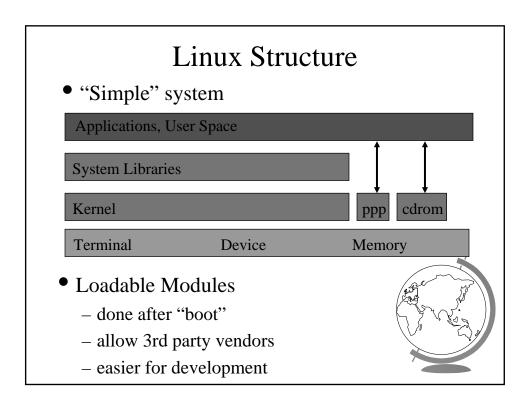
Virtual Machines


• IBM VM/370 → VMWare

Process	Process	Process		
Process	Process	Process		
Operating Sys	Operating Sys	Operating Sys		
Virtual Machine				
Hardware				


- Complete protection
- OS development, emulation
- Performance!
- (Exokernel says can have subset of kernel 1


Virtual Machines


Java Virtual Machine

• Platform independence!

