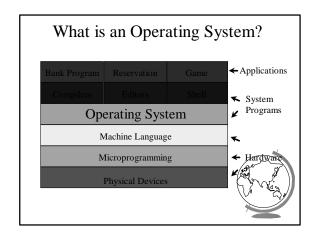


Operating System I

Introduction

Topics


- **♦** What is an OS?
- **♦** OS History
- **→** OS Concepts
- + OS Structures

Let's Get Started!

- ♦ What are some OSes you know?
- → Pick an OS you know:
 - What are some things you like about it?
 - What are some things you don't like about it?

What is an Operating System?

- ◆ An Extended Machine (Top-down)
 - Transforming new resource
 - ex: Win98 device manager
- ◆ A Resource Manager (Bottom-up)
 - Multiplexing illusion of several resources
 - ex: browse the web AND read email
 - Scheduling deciding who gets what when
 - ex: compile fast OR edit fast
- ♦ Why have an OS?
 - Convenient and Efficient
 - ◆ Programming hardware difficult
 - ◆ Idle hardware "wasteful"

OS History

- → Helps understand key requirements
 - Not one brilliant design
 - ◆ (despite what Gates or Torvalds might say)
 - Fixed previous problems, added new ones
 - Tradeoffs
- **→** Closely tied to:
 - Hardware history
 - User history

Hardware History 1981 1999 Factor 250 250 Power \$/Power \$100K \$45 2200 128K 128M Memory Disk Capacity 10M 10G 9600b/s 155Mb/s 15K Net Bandwidth Users / Mach. ◆ Comments? Change!

Where are we?

- → Ch 1-3 by Monday
 - Reading details on course Web page
 - Ch 1, brief, alternate viewpoint
 - Ch 2, computer architecture review
 - Ch 3, today and Monday
- → Timeline on Web page
 - Proj 0 in by Monday
 - Proj 1 out Monday
 - HW 1 out Tuesday

Questions

- ♦ What are two functions of an OS?
- ♦ What "layer" is above the OS?
- ♦ What "layer" is below the OS?

Hardware Very Expensive Humans Cheap

- → Single program execution (no OS)
- ◆ Hardwire "programming"
- ◆ Programming slow, not "offline"!
 - Punch cards

Hardware Very Expensive Humans Cheap

- → Punch cards
- ◆ Fortran or assembler
- → Waste computer time walking!
 - Batch programs on tape

Hardware Very Expensive Humans Cheap

- → Programs read in from tape
- **→** Two applications:
 - Scientific
 - Data processing
- ◆ CPU idle during I/O!
 - Multiprogramming with partitions
 - Spooling as jobs finished

Hardware is Cheap Humans Expensive

- → Turn around time 1/2 day
- ◆ Programmer time wasted!
 - "Sigh. In the good old days...."
 - Time-sharing
 - Multics (sorta)
 - New problems
 - ◆ response time
 - ◆ thrashing
 - ♦ file-systems

Hardware Very Cheap Humans Very Expensive

- → Personal computers
 - Network operating systems
 - Distributed operating systems
- **♦** OSes today
 - small == 1000K (15 pages, 5 programmer years)
 - large == 10,000K (150 pages, 500 programmer years) (longer than a semester :-))
 - need to evolve quickly
 - hardware upgrades, new user services, bug fix

Windows NT Today

- efficient and/or modular kernels

Windows NT History

- + 1988, v1
 - split from joint work with IBM OS/2
 - Win32 API
- + 1990, v3.1
 - Server and Workstation versions
- + 1997(?), v4
 - Win95 interface
 - Graphics to kernel
 - More NT licenses sold than all Unix combine

→ Microsoft has 80% to 90% of OS market - mostly PC's - 233 MHz Level Parties.

- → 333 MHz Intel Pentium
- ◆ NT aiming at robust, server market
 - network, web and database
- **→** Platforms
 - Intel 386+
- Alpha
- MIPS R4000
- PowerPC
- ♦ (Win2000 merges Win98 and WinN

NT

Linux History

- → Open Source
 - Release Early, Release Often, Delegate
 - "The Cathedral or the Baazar"
- ◆ Bday 1991, Linus Torvalds, 80386 processor
 - v.01, limited devices, no networking,
 - with proper Unix process support!
- + 1994, v1.0
 - networking (Internet)
 - enhanced file system (over Minix)
 - many devices, dynamic kernel modules

Linux History

- ◆ Development convention
 - Odd numbered minor versions "development"
 - Even numbered minor versions "stable"
- + 1995, v1.2
 - more hardware
 - 8086 mode (DOS emulation) included
 - Sparc, Alpha, Mips support started
- + 1996, v2.0
 - multiple architectures, multiple process
 - threads, memory management

Linux Today

- + v2.2
- → 1,000,000 lines of code
- → 7-10 million users
- ◆ Estimated growth 25%/year through 2003
 - all others, 10% combined

Questions

- ♦ When is it appropriate for OS to "waste" resources?
- → How might the growth in networks influence OS design?

Operating System Concepts

- **→** Processes
- **→** Files
- **→** System Calls
- **→** Shells

sue

The Process

- → Program in execution
- → Running -> Suspended -> Running
- → Example: the Shell
- ◆ Process "Tree"
- **→** Signals
- ♦ UID (GID)
- ◆ (Two weeks)

Files

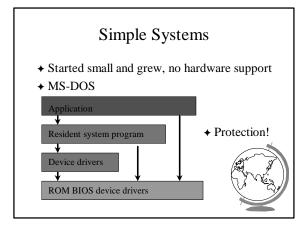
bob

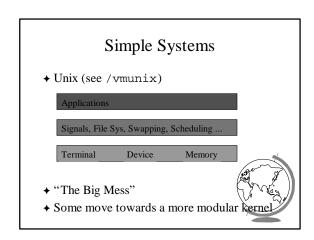
3013

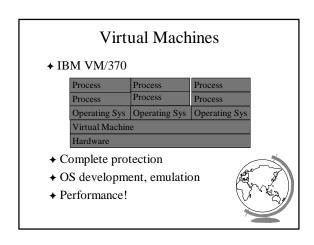
- → Store data on disk
- ◆ Directory "Tree"
- ♦ Working directory
- ◆ Protection bits
 - 9 in Unix: **rwx bits**, ex: rwxr-x--x
- ◆ Abstraction of I/O device
 - terminal, printer, network, modem
- **→** Pipe
- **♦** (1-2 Days)

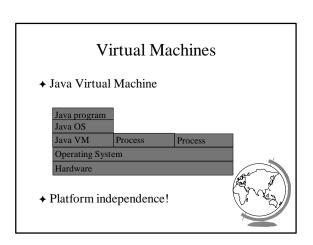
- ◆ Way processes communicate with OS
- → example:
- write(file, string, size)
- **→** OS specific!
- + POSIX (1980s)
 - Portable Operating System (unIX-ish)
- ♦ (Most of the projects)

Shells


- ◆ (Project 0 uses shell)
- → User's interface to OS
- ◆ Simple commands "cd", "cat", "top"
- **♦** Modifiers '&', '|', '>'
- ◆ (Project 1 is to write a shell)




Operating System Structure


- **→** Simple Systems
- ♦ Virtual Machines
- → Micro Kernels

