
1

Operating Systems

Memory Management
(Ch 4: 4.1-4.2)

Overview

• Provide Services (done)
– processes (done)
– files (briefly here, more in cs4513)

• Manage Devices
– processor (done)
– memory (next!)
– disk (done after files)

Simple Memory Management

• One process in memory, using it all
– each program needs I/O drivers
– until 1960

RAM User
Prog

I/O drivers

Simple Memory Management
• Small, protected OS, drivers

– DOS

OS

OS

RAM

ROM Device
Drivers ROM

OS

RAM RAM
User
Prog User

Prog

User
Prog

• “Mono-programming” -- No multiprocessing!
- Early efforts used “Swapping”, but slooooow

Multiprocessing w/Fixed Partitions

OS
Partion 1

Partion 2

Partion 3

Partion 4

200k
300k

500k

900k

OS
Partion 1

Partion 2

Partion 3

Partion 4

(a) (b)

• Unequal queues • Waste large partition
• Skip small jobs

Simple!

Hey, processes can be in different memory locations!

Address Binding
• Compile Time

– maybe absolute binding (.com)

• Link Time
– dynamic or static libraries

• Load Time
– relocatable code

• Run Time
– relocatable memory segments
– overlays
– paging

Source

Object

RAM
Binary

Compile

Load

Load
Module

Link

Run

2

Logical vs. Physical Addresses
• Compile-Time + Load Time addresses same
• Run time addresses different

CPU

Relocation
Register

+

14000

MMU

Logical
Address

346

Physical
Address

Memory
14346

• User goes from 0 to max
• Physical goes from R+0 to R+max

Relocatable Code Basics
• Allow logical addresses
• Protect other processes

CPU

Limit Reg

<

error

no

Reloc Reg

+
yes

physical
address

Memory

• Addresses must be contiguous!

MMU

Design Technique: Static vs. Dynamic
• Static solutions

– compute ahead of time
– for predictable situations

• Dynamic solutions
– compute when needed
– for unpredictable situations

• Some situations use dynamic because static
too restrictive (malloc)

• ex: memory allocation, type checking

Variable-Sized Partitions

• Idea: want to remove “wasted” memory that
is not needed in each partition

• Definition:
– Hole - a block of available memory
– scattered throughout physical memory

• New process allocated memory from hole
large enough to fit it

Variable-Sized Partitions
OS

process 5

process 8

process 2

OS
process 5

process 2

8 done

OS
process 5

process 2

process 9
9 arrv

OS

process 2

process 9
10 arrv

process 10
5 done

• OS keeps track of:
– allocated partitions
– free partitions (holes)
– queues!

Memory Request?

• What if a request for additional memory?

OS

process 2

process 3

process 8

malloc(20k)?

3

Internal Fragmentation
• Have some “empty” space for each

processes

• Internal Fragmentation - allocated memory
may be slightly larger than requested
memory and not being used.

OS
A program

A data

A stack

Room for growthAllocated to A

External Fragmentation

• External Fragmentation - total memory
space exists to satisfy request but it is not
contiguous OS

process 2

process 3

process 8

50k

100k

Process 9125k ?

“But, how much does this matter?”

Analysis of External Fragmentation

• Assume:
– system at equilibrium
– process in middle
– if N processes, 1/2 time process, 1/2 hole

+ ==> 1/2 N holes!
– Fifty-percent rule
– Fundamental:

+ adjacent holes combined
+ adjacent processes not combined

Compaction
• Shuffle memory contents to place all free

memory together in one large block
• Only if relocation dynamic!
• Same I/O DMA problem

Process 9125k

OS

process 2

process 3

process 8

OS

process 2

process 3

process 8

50k

100k

OS

process 2

process 3

process 8

90k

60k

(a) (b)

Cost of Compaction

process 2

process 3

process 8

50k

100k

90k

60k

process 1 process 1

process 2

process 3

process 8

• 128 MB RAM, 100 nsec/access
! 1.5 seconds to compact!

• Disk much slower!

Solution?

• Want to minimize external fragmentation
– Large Blocks
– But internal fragmentation!

• Tradeoff
– Sacrifice some internal fragmentation for

reduced external fragmentation
– Paging

4

Where Are We?
• Memory Management

– fixed partitions (done)
– linking and loading (done)
– variable partitions (done)

• Paging ←←←←
• Misc

Paging

• Logical address space noncontiguous;
process gets memory wherever available
– Divide physical memory into fixed-size blocks

+ size is a power of 2, between 512 and 8192 bytes
+ called Frames

– Divide logical memory into bocks of same size
+ called Pages

Paging
• Address generated by CPU divided into:

– Page number (p) - index to page table
+ page table contains base address of each page in

physical memory (frame)
– Page offset (d) - offset into page/frame

CPU p d

page table

f

f d

physical
memory

Paging Example

Page 0

• Page size 4 bytes
• Memory size 32 bytes (8 pages)

Page 1

Page 2

Page 3

1

4

3

7

0

1

2

3

Page TableLogical
Memory

Page 1

Page 3

Physical
Memory

Page 0

Page 2

0

1

2

3

4

5

6

7

Paging Example

Pa
ge

 0
Pa

ge
 1

Pa
ge

 2
Pa

ge
 3

01

11

00

10

00

01

10

11

Page Table
Logical
Memory

000

001

010

011

100

101

110

111

Physical
Memory

000

001

010

011

100

101

110

111

0 0 1 0 1 1

Page

Offset

Frame

Paging Hardware

page number
p

page offset
d

• address space 2m

• page offset 2n

• page number 2m-n

m-n n

• note: not losing any bytes!

phsical
memory
2m bytes

5

Paging Example

• Consider:
– Physical memory = 128 bytes
– Physical address space = 8 frames

• How many bits in an address?
• How many bits for page number?
• How many bits for page offset?
• Can a logical address space have only 2

pages? How big would the page table be?

Another Paging Example

• Consider:
– 8 bits in an address
– 3 bits for the frame/page number

• How many bytes (words) of physical memory?
• How many frames are there?
• How many bytes is a page?
• How many bits for page offset?
• If a process’ page table is 12 bits, how many

logical pages does it have?

Page Table Example

1

4

0

1

Page Table

Page 0

Page 1

Process A

Page 1A

Page 1B

Physical
Memory

Page 0A

Page 0B

0

1

2

3

4

5

6

7

Page 0

Page 1

Process B

3

7

0

1

Page Table

page number
p

page offset
d

m-n=3 n=4

b=7 Paging Tradeoffs
• Advantages

– no external fragmentation (no compaction)
– relocation (now pages, before were processes)

• Disadvantages
– internal fragmentation

+ consider: 2048 byte pages, 72,766 byte proc
– 35 pages + 1086 bytes = 962 bytes

+ avg: 1/2 page per process
+ small pages!

– overhead
+ page table / process (context switch + space)
+ lookup (especially if page to disk)

Implementation of Page Table

• Page table kept in registers
• Fast!
• Only good when number of frames is small
• Expensive!

Registers

Memory

Disk

Implementation of Page Table
• Page table kept in main memory
• Page Table Base Register (PTBR)

Page 0

Page 1

1

4

0

1

Page TableLogical
Memory

Page 1

Physical
Memory

Page 0

0

1

2

3

1 4

PTBR

• Page Table Length
• Two memory accesses per data/inst access.

– Solution? Associative Registers

6

Associative Registers

CPU

p d

page table

f

f d

physical
memory

page
number

frame
number

associative
registers

miss

hit

logical
address

physical
address

10-20% mem time

Associative Register Performance
• Hit Ratio - percentage of times that a page

number is found in associative registers
Effective access time =
hit ratio x hit time + miss ratio x miss time
• hit time = reg time + mem time
• miss time = reg time + mem time * 2
• Example:

– 80% hit ratio, reg time = 20 nanosec, mem time
= 100 nanosec

– .80 * 120 + .20 * 220 = 140 nanoseconds

Protection
• Protection bits with each frame
• Store in page table
• Expand to more perms

Page 0

Page 1

Page 2

1

0

3

0

0

1

2

3

Page TableLogical
Memory Physical

Memory

Page 0

Page 2

0

1

2

3

v

v

v

i

Page 1

Protection
Bit

Large Address Spaces
• Typical logical address spaces:

– 4 Gbytes => 232 address bits (4-byte address)
• Typical page size:

– 4 Kbytes = 212 bits
• Page table may have:

– 232 / 212 = 220 = 1million entries
• Each entry 3 bytes => 3MB per process!
• Do not want that all in RAM
• Solution? Page the page table

– Multilevel paging

Multilevel Paging

Page 0

...

...
...

Outer Page
Table

Logical
Memory

...

...

Page Table

...

page number
p1

page offset
d

10 12
p2

10

Multilevel Paging Translation
page number

p1
page offset

dp2

outer page
table inner page

table

desired
page

d
p2

p1

7

Inverted Page Table
• Page table maps to physical addresses

CPU pid dp

se
ar

ch

pid p

i

i d

Physical
Memory

• Still need page per process --> backing store
• Memory accesses longer! (search + swap)

Memory View
• Paging lost users’ view of memory
• Need “logical” memory units that grow and

contract

subroutine

stack

symbol table

main

• Solution?
• Segmentation!

ex: stack,
shared library

Segmentation
• Logical address: <segment, offset>
• Segment table - maps two-dimensional user

defined address into one-dimensional
physical address
– base - starting physical location
– limit - length of segment

• Hardware support
– Segment Table Base Register
– Segment Table Length Register

Segmentation

CPU

s d
logical
address

limit base

<

error

no

+
yes

physical
address

physical
memory

main

stack

(“Er, what have we gained?”)
" Paged segments!

Memory Management Outline
• Basic (done)

– Fixed Partitions (done)
– Variable Partitions (done)

• Paging (done)
– Basic (done)
– Enhanced (done)

• Specific ←←←←
– WinNT
– Linux

• Linking and Loading

Memory Management in WinNT

• 32 bit addresses (232 = 4 GB address space)
– Upper 2GB shared by all processes (kernel mode)
– Lower 2GB private per process

• Page size is 4 KB (212, so offset is 12 bits)
• Multilevel paging (2 levels)

– 10 bits for outer page table (page directory)
– 10 bits for inner page table
– 12 bits for offset

8

Memory Management in WinNT

• Each page-table entry has 32 bits
– only 20 needed for address translation
– 12 bits “left-over”

• Characteristics
– Access: read only, read-write
– States: valid, zeroed, free …

• Inverted page table
– points to page table entries
– list of free frames

Memory Management in Linux

• Page size:
– Alpha AXP has 8 Kbyte page
– Intel x86 has 4 Kbyte page

• Multilevel paging (3 levels)
– Makes code more portable
– Even though no hardware support on x86!

+ “middle-layer” defined to be 1

Normal Linking and Loading
Printf.c

Printf.o

Static
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

X Window code:
- 500K minimum
- 450K libraries

Load Time Dynamic Linking

Printf.c

Printf.o

Dynamic
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

• Save disk space.
• Libraries move?
• Moving code?
• Library versions?
• Load time still
the same.

Run-Time Dynamic Linking
Printf.c

Printf.o

Dynamic
Library

gcc

ar

a.out

Linker

Memory

Main.c

gcc

Main.o

Loader

Save disk space.
Startup fast.
Might not need all.

Run-time
Loader

Memory Linking Performance
Comparisons

Linking
Method

Disk
Space

Load
Time

Run
Time

(4 used)

Run
Time

(2 used)

Run Time
(0 used)

Static 3Mb 3.1s 0 0 0

Load
Time

1Mb 3.1s 0 0 0

Run
Time

1Mb 1.1s 2.4s 1.2s 0

