Operating Systems

Virtual Memory
(Chapter 4.3)

Memory Management Outline

® Processes (done)
* Memory Management
— Basic (done)
— Paging (done)
— Virtual memory -

Motivation

* Logical address space larger than physical
memory

— 2% about 4 GB in size

- “Virtual Memory”

— on special disk
* Abstraction for programmer
* Performance ok? Examples:

— Unused libraries

— Error handling not used

— Maximum arrays

Paging Implementation

Validation

/ Bit

0
1
2
3

Logical Page Table
Memory Physical
Memory

Accessing Invalid Pages

* Page not in memory
— interrupt OS => page fault
® OS looks in table:
— invalid reference? => abort
— not in memory? => bring it in
* Get empty frame (from list)
* Write page from disk into frame
* Reset tables (set valid bit = 1)
® Restart instruction

Performance of Demand Paging

* Page Fault Rate (p)
0<p<1.0 (nopage faultsto every ref is a fault)
* Page Fault Overhead
= write page in + update + restart
— Dominated by time to write page in
* Effective Access Time
= (1-p) (memory access) + p (page fault o

e




Performance Example

* Memory access time = 100 nanoseconds
* Page fault overhead = 25 msec
* Page fault rate = 1/1000
* EAT = (1-p) * 100 + p * (25 msec)

= (1-p) * 100 + p * 25,000,000

=100 + 24,999,900 * p

=100 + 24,999,900 * 1/1000 = 25 microseconds!
Want less than 10% degradation
110 > 100 + 24,999,900 * p

10 > 24,999,9000 * p

p <.0000004 or 1 fault in 2,500,000 accesses!

No Free Frames

® Page fault => What if no free frames?
— terminate process (out of memory)
— swap out process (reduces degree of multiprog)
- replace another page with needed page
— Page replacement

* Page fault with page replacement:
— if free frame, use it
— else use algorithm to select victim frame
— write page to disk
- read in new page
— change page tables
— restart process

Page Replacement

0
1
2
3

w Nk O

Page Table
0 ®
Logical
Memory 1 Physical
Memory
Page Table

First-In-First-Out (FIFO)
1,2,3,4,1,2,5,1,2,3,4,5

3 Frames / Process

Page Replacement Algorithms

* Every system has its own
* Want lowest page fault rate

¢ Evaluate by running it on a particular string
of memory references (reference string) and
computing number of page faults

* Example: 1,2,3,4,1,2,5,1,2,3,4,5

First-In-First-Out (FIFO)

1,2,3,4,1,251,2,3,4,5
45
3 Frames / Process 13 9 Page Faults
2 4

How could we reduce the number of page faults?




Optimal

N

* Replace the page that will not be used for
the longest period of time

12,3,41,251,23,4,5

4 Frames / Process

Optimal

NN

* Replace the page that will not be used for
the longest period of time

1,2,3,41,2,5,1,2,3,45

4 Frames / Process

Use as benchmatf

Least Recently Used

* Replace the page that has not been used for
the longest period of time

1,2,34125,1234,5

LRU Implementation

* Counter implementation

— every page has a counter; every time page is
referenced, copy clock to counter

— when a page needs to be changed, compare the
counters to determine which to change

e Stack implementation

— keep a stack of page numbers

— page referenced: move to top

- no search needed for replacement
® (Can we do this in software?)

Least Recently Used

* Replace the page that has not been used for
the longest period of time

1,23,4125,1,23,45

8 Page Faults

LRU Approximations

* | RU good, but hardware support expensive
* Some hardware support by reference bit

— with each page, initially =0

— when page is referenced, set = 1

— replace the one which is 0 (no order)

* Enhance by having 8 bits and shifting
— approximate LRU




Second-Chance

* FIFO replacement, but ...
— Get first in FIFO

— Look at reference bit
+ bit == 0 then replace
+ bit == 1 then set bit = 0, get next in FIFO

* |f page referenced enough, never replac
* Implement with circular queue

Second-Chance

Next
Vicitm

1 0
0 > 0
1 0

Enhanced Second-Chance

* 2-bits, reference bit and modify bit

¢ (0,0) neither recently used nor modified
— best page to replace

* (0,1) not recently used but modified
— needs write-out (“dirty” page)

* (1,0) recently used but “clean”
— probably used again soon

* (1,1) recently used and modified
— used soon, needs write-out

 Circular queue in each class -- (Macintosh

Page Buffering

* Pool of frames
— start new process immediately, before writing old
+ write out when system idle
— list of modified pages
+ write out when system idle
— pool of free frames, remember content
+ page fault => check pool

Thrashing

* |f a process does not have “enough” pages,
the page-fault rate is very high
— low CPU utilization
— OS thinks it needs increased multiprogramming
— adds another process to system

® Thrashing is when a process is busy
swapping pages in and out

CPU

utilization

Thrashing

degree of muliprogramming




Cause of Thrashing

* Why does paging work?
— Locality model
+ process migrates from one locality to another
+ localities may overlap

* Why does thrashing occur?

— sum of localities > total memory size
* How do we fix thrashing?

— Working Set Model

- Page Fault Frequency

Working-Set Model

* Working set window W = a fixed number of
page references
— total number of pages references in time T

* Total = sum of size of W’s

* m = number of frames

Working Set Example

*T=5
©123231243474334112221

w={1,2,3} W={3,4,7y W={1,2}

— if T too small, will not encompass locality

— if T too large, will encompass several localities
— if T => infinity, will encompass entire program

¢ if Total > m => thrashing, so suspend a progs

* Modify LRU appx to include Working Se!

Page Fault Frequency

increase
number of
frames

[

i}

g upper bound

=

>

T

[N

S lower bound

& decrease
number of

Number of Frames

* Establish “acceptable” page-fault rate
— If rate too low, process loses frame
— If rate too high, process gains frame

Outline

¢ Demand Paging Intro (done)
* Page Replacement Algorithms (done)
® Thrashing (done)

* Misc Paging

* WIinNT

® Linux

“Application Performance Studies”

Prepaging

* Pure demand paging has many page faults
initially
— use working set

— does cost of prepaging unused frames outweigh
cost of page-faulting?




Page Size
* Old - Page size fixed, New -choose page size
* How do we pick the right page size? Tradeoffs:
— Fragmentation
— Table size
— Minimize I/O

+ transfer small (.1ms), latency + seek time large (10ms)

— Locality
+ small finer resolution, but more faults
— ex: 200K process (1/2 used), 1 fault / 200k, 100K .» Glis
Historical trend towards larger page siz€%

— CPU, mem faster proportionally than disks

Program Structure

* consider:

int Al 1024][1024];

for (j=0; j<1024; j++)

for (i=0; i<1024; i++)
AliTLT = 0

® suppose:

— process has 1 frame

— 1 row per page

— =>1024x1024 page faults!

Program Structure

int Al 1024][1024];
for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
ALiTLIT =6

® 1024 page faults
¢ Stack vs. Hash table
* Compiler
— separate code from data
— keep routines that call each other together
LISP (pointers) vs. Pascal (no-pointers)

Priority Processes

* Consider
— low priority process faults,
+ bring page in
— low priority process in ready queue for awhile,
waiting while high priority process runs
— high priority process faults
+ low priority page clean, not used in a while

= }
> perfect! 4
o* (
d

* Lock-bit (like for 1/0) until used on

Real-Time Processes

* Real-time
— bounds on delay

— hard-real time: systems crash, lives lost
+ air-traffic control, factor automation
— soft-real time: application sucks
+ audio, video
* Paging adds unexpected delays
—don’tdo it

— lock bits for real-time processes

Virtual Memory and WinNT/2000

* Page Replacement Algorithm

- FIFO

— Missing page, plus adjacent pages
* Working set

— default is 30

— take victim frame periodically

— if no fault, reduce set size by 1
* Reserve pool

— hard page faults

- soft page faults




Virtual Memory and WinNT/2000

¢ Shared pages

— level of indirection for easier updates
— same virtual entry

* Page File
— stores only modified logical pages

— code and memory mapped files on disk aJready
}I

Virtual Memory and Linux

* Regions of virtual memory

— paging disk (normal)

— file (text segment, memory mapped file)
* Re-Examine fork() and exec()

— exec() creates new page table

— fork() copies page table

+ reference to common pages
+ if written, then copied

Virtual Memory and Linux

* Page Replacement Algorithm
— look in reserve pool for free frames
— reserves for block devices (disk cache)
— reserves for shared memory
— user-space blocks

— enhanced second chance (with more bits)
+ “dirty” pages not taken first

Capacity Planning Then and Now

® Capacity Planning in the good old days
— used to be just mainframes
— simple CPU-load based queuing theory
— Unix
¢ Capacity Planning today
— distributed systems
— networks of workstations
— Windows NT
— MS Exchange, Lotus Notes

Mikhail Mikhailov™ ot Sved
Ganga Kannan _ agib oye
Mark Claypool Divya Prakash

David Finkel Sujit Kumar
WPI BMC Software, Inc.

Experiment Design

Does NT have more hard page faults or
soft page faults?

® System * Experiments
— Pentium 133 MHz — Page Faults
— NT Server 4.0 — Caching
- 64 MB RAM
- IDENTFS
~ NTv40 * Analysis

— per f mon
® cl earnem




Page Fault Method

* “Work hard”
* Run lots of applications, open and close
* All local access, not over network

Soft or Hard Page Faults?

E:TIEIF:H"’I s @
b
Pl

Caching and Prefetching

e Start process

— wait for “Enter”
Start per f non
* Hit “Enter”
Read 1 4-K page
* Exit

* Repeat

Page Metrics with Caching On

Hit Return = Read ale
button 4KB

y|

s Start
.
= button
b
]
-
- EN
B
E
¥
P e e —
= e Ll e e e e ]

o et =
s PO g Lo OO0




