
1

CS4513
Distributed Computer

Systems

Introduction
(Ch 1: 1.1-1.2, 1.4-1.5)

Outline

• Overview
• Goals
• Software
• Client Server

The Rise of Distributed Systems

• Computer hardware prices falling, power increasing
– If cars the same, Rolls Royce would cost 1 dollar and

get 1 billion miles per gallon (with 200 page manual to
open the door)

• Network connectivity increasing
– Everyone is connected with fat pipes

• It is easy to connect hardware together
• Definition: a distributed system is

– A collection of independent computers that appears
to its users as a single coherent system.

Definition of a Distributed System

A distributed system organized as middleware.
Note that the middleware layer extends over multiple machines.

Users can interact with the system in a consistent way, regardless
of where the interaction takes place

Examples:
-The Web
-Processor Pool
-Airline
Reservation

Transparency in a Distributed System

Different forms of transparency in a distributed system.

Hide whether a (software) resource is in memory or on diskPersistence

Hide the failure and recovery of a resourceFailure

Hide that a resource may be shared by several competitive
usersConcurrency

Hide that a resource may be shared by several competitive
usersReplication

Hide that a resource may be moved to another location while
in useRelocation

Hide that a resource may move to another locationMigration

Hide where a resource is locatedLocation

Hide differences in data representation and how a resource is
accessedAccess

DescriptionTransparency

Scalability Problems
• As distributed systems grow, centralized solutions

are limited
– Consider LAN name resolution vs. WAN

Doing routing based on complete
informationCentralized algorithms

A single on-line telephone bookCentralized data

A single server for all usersCentralized services

ExampleConcept

• Sometimes, hard to avoid (consider a bank)
• Need to collect information in distributed fashion

and distributed in a distributed fashion
• Challenges:

– geography, ownership domains, time synchronization

2

Scaling Techniques: Hiding
Communication Latency

• Especially important for interactive applications
• If possible, do asynchronous communication

- Not always possible when client has nothing to do

• Instead, can hide latencies

Scaling Techniques: Distribution

1.5

Example: DNS name space into zones
(nl.vu.cs.fluit – z1 gives address of vu gives
address of cs)

Example: The Web

Scaling Techniques: Replication
• Copy of information to increase availability

and decrease centralized load
– Example: P2P networks (Gnutella +)

distribute copies uniformly or in proportion
to use

– Example: akamai
– Example: Caching is a replication decision

made by client
• Issue: Consistency of replicated

information
– Example: Web Browser cache

Outline

• Overview (done)
• Goals (done)
• Software ←←
• Client Server

Software Concepts

• DOS (Distributed Operating Systems)
• NOS (Network Operating Systems)
• Middleware

Provide distribution
transparency

Additional layer atop of NOS implementing
general -purpose services

Middleware

Offer local services
to remote clients

Loosely -coupled operating system for
heterogeneous multicomputers (LAN and
WAN)

NOS

Hide and manage
hardware resources

Tightly-coupled operating system for multi -
processors and homogeneous multicomputers

DOS

Main GoalDescriptionSystem

Uniprocessor Operating Systems

• Separating applications from operating
system code through a microkernel
– Can extend to multiple computers

3

Multicomputer Operating Systems

• But no longer have shared memory
– Can try to provide distributed shared memory

• Tough, coming up
– Can provide message passing

Multicomputer Operating Systems

• Message passing primitives vary widely between systems
– Example: consider buffering and synchronization

(optional) (optional)

Multicomputer Operating Systems

• Relation between blocking, buffering, and reliable
communications.

• These issues make synchronization harder. It was easier when
we had shared memory.
– So … distributed shared memory

NecessaryNoBlock sender until message delivered

NecessaryNoBlock sender until message received

Not necessaryNoBlock sender until message sent

Not necessaryYesBlock sender until buffer not full

Reliable comm.
guaranteed?Send bufferSynchronization point

Distributed Shared Memory Systems

a) Pages of address
space distributed
among four
machines

b) Situation after
CPU 1 references
page 10

c) Situation if page
10 is read only
and replication is
used

Distributed Shared Memory Systems

• Overall, DSM systems have struggled to provide efficiency and
convenience (and been around 15 years)
– For higher-performance, typically still do message passing
– Likely will remain that way

• Issue: how large should page sizes be? What are the
tradeoffs?

Network Operating System

• OSes can be different (Windows or Linux)
• Typical services: rlogin, rcp

– Fairly primitive way to share files

4

Network Operating System

• Can have one computer provide files transparently
for others (NFS)
– (try a “df” on the WPI hosts to see. Similar to a “mount

network drive” in Windows)

Network Operating System

• Different clients may mount the servers in different places
• Inconsistencies in view make NOSes harder, in general for

users than DOSes.
– But easier to scale by adding computers

Positioning Middleware
• Network OS not transparent. Distributed OS not

independent computers.
– Middleware can help

• Much middleware built in-house to help use networked
operating systems(distributed transactions, better comm, RPC)

• Unfortunately, many different standards

Middleware and Openness

• In an open middleware-based distributed system, the
protocols used by each middleware layer should be the same, as
well as the interfaces they offer to applications.
– If different, compatibility issues
– If incomplete, then users build their own or use lower-layer

services (frowned upon)

1.23

Comparison between Systems

• DOS most transparent, but closed and only moderately
scalable

• NOS not so transparent, but open and scalable
• Middleware provides a bit more transparency than NOS

OpenOpenClosedClosedOpenness

VariesYesModeratelyNoScalability

Per nodePer nodeGlobal, distributedGlobal, centralResource management

Model specificFilesMessagesShared memoryBasis for communication

NNN1Number of copies of OS

NoNoYesYesSame OS on all nodes

HighLowHighVery HighDegree of transparency

Multicomp.Multiproc.

Middleware-
based OS

Network
OS

Distributed OS
Item

Outline

• Overview (done)
• Goals (done)
• Software (done)
• Client Server ←←

5

Clients and Servers
• Thus far, have not talked about organization of

processes
– Again, many choices but most agree upon client-server

• If can do so without connection, quite simple
• If underlying connection is unreliable, not trivial
• Resend? What if receive twice

• Use TCP for reliable connection (apps on Internet)
• Not always appropriate for high-speed LAN connection

(4513)

Example Client and Server: Header

• Used by both the client and server.

Example Client and Server: Server Example Client and Server: Client

• One issue, is how to clearly differentiate

Client-Server Implementation Levels

• Example of an Internet search engine
– UI on client
– Processing can be on client or server
– Data level is server, keeps consistency

Multitiered Architectures

• Thin client (a) to Fat client (e)
– (d) and (e) popular for NOS environments

6

Multitiered Architectures: 3 tiers

• Server may act as a client
– Example would be transaction monitor across

multiple databases

Modern Architectures: Horizontal

• Rather than vertical, distribute servers across
nodes
– Example of Web server “farm” for load balancing
– Clients, too (peer-to-peer systems)

