
1

Operating Systems

File Systems
(Ch 10.1-10.4, Ch 11.1-11.5)

Motivation

F Process store, retrieve information
F Process capacity restricted to vmem size
F When process terminates, memory lost
F Multiple processes share information

F Requirements:
– large
– persistent
– concurrent access

Solution? Files!

Outline

F Files ←
F Directories
F Disk space management
F Misc

File Systems

F Abstraction to disk (convenience)
– “The only thing friendly about a disk is that it

has persistent storage.”
– Devices may be different: tape, IDE/SCSI, NFS

F Users
– don’t care about detail
– care about interface

F OS
– cares about implementation (efficiency)

File System Concepts

F Files - store the data
F Directories - organize files
F Partitions - separate collections of

directories (also called “volumes”)
– all directory information kept in partition
– mount file system to access

F Protection - allow/restrict access for files,
directories, partitions

Files: The User’s Point of View

F Naming: how do I refer to it?
– blah, BLAH, Blah
– file.c, file.com

F Structure: what’s inside?
– Sequence of bytes (most modern OSes)
– Records - some internal structure
– Tree - organized records

2

Files: The User’s Point of View
F Type:

– ascii - human readable
– binary - computer only readable
– “magic number” (executable, c-file …)

F Access Method:
– sequential (for character files, an abstraction of

I/O of serial device such as a modem)
– random (for block files, an absraction of I/O to

block device such as a disk)

F Attributes:
– time, protection, owner, hidden, lock, size ...

File Operations

F Create
F Delete
F Truncate
F Open
F Read
F Write
F Append

F Seek - for random access
F Get attributes
F Set attributes

Example: Unix open()

int open(char *path, int flags [, int mode])

F path is name of file
F flags is bitmap to set switch

– O_RDONLY, O_WRONLY…
– O_CREATE then use mode for perms

F success, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags);

read(fid, …);
User Space

System Space

stdin
stdout
stderr

...

0
1
2
3

File Structure

...

...

File
Descriptor

(where
blocks are)(attributes)(index)

Example: WinNT CreateFile()
F Returns file object:

HANDLE CreateFile (
 lpFileName, // name of file
 dwDesiredAccess, // read-write
 dwShareMode, // shared or not
 lpSecurity, // permissions

 ...
)

F File objects used for all: files, directories,
disk drives, ports, pipes, sockets and
console

File System Implementation
Process

Descriptor

Open
File

Pointer
Array

Open File
Table

File Descriptor
Table

(in memory
copy,

one per
device)

(per process)

Disk

File sys info

File
descriptors

Copy fd
to mem

Directories

Data

Next up: file descriptors!

3

File System Implementation

F Which blocks with which file?
F File descriptors:

– Contiguous
– Linked List
– Linked List with Index
– I-nodes

File
Descriptor

Contiguous Allocation
F Store file as contiguous block

– ex: w/ 1K block, 50K file has 50 coneq blocks
File A: start 0, length 2
File B: start 14, length 3

F Good:
– Easy: remember 1 number (location)
– Fast: read entire file in one operation (length)

F Bad:
– Static: need to know file size at creation

u or tough to grow!

– Fragmentation: remember why we had paging?

Linked List Allocation
F Keep a linked list with disk blocks

F Good:
– Easy: remember 1 number (location)
– Efficient: no space lost in fragmentation

F Bad:
– Slow: random access bad

File
Block

0

File
Block

1

File
Block

2
Physical
Block

null

4 7 2

File
Block

0

File
Block

1

null

6 3

Linked List Allocation with
Index

F Table in memory
– faster random access
– can be large!

u 1k blocks, 500K disk
u = 2MB!

– MS-DOS FAT

Physical
Block

0
1

null2

null3

74
5

36

27

I-nodes

F Fast for small
files

F Can hold big files
F Size?

– 4 kbyte block

D
isk

 A
dd

re
ss

es

i-node
attributes

single
indirect block

double indirect
block

triple indirect
block

Outline

F Files 4
F Directories ←
F Disk space management
F Misc

4

Directories

F Just like files, only have special bit set so
you cannot modify them (what?!)
– data in directory is information / links to files

F Organized for:
– efficiency - locating file quickly
– convenience - user patterns

u groups (.c, .exe), same names

F Tree structure directory the most flexible
– aliases allow files to appear at more than one

location

Directories

F Before reading file, must be opened
F Directory entry provides information to get

blocks
– disk location (block, address)
– i-node number

F Map ascii name to the file descriptor

Simple Directory

F No hierarchy (all “root”)
F Entry

– name
– block count
– block numbers

name block count

block numbers

Hierarchical Directory (MS-DOS)

F Tree
F Entry:

– name - date
– type (extension) - block number (w/FAT)
– time

name type attrib time date block size

Hierarchical Directory (Unix)

F Tree
F Entry:

– name
– inode number

F example:
/usr/bob/mbox

inode name

Unix Directory Example

 1 .
 1 ..
 4 bin
 7 dev
14 lib
 9 etc
 6 usr
 8 tmp

132

Root Directory

Looking up
usr gives
 I-node 6

 6 .
 1 ..
26 bob
17 jeff
14 sue
51 sam
29 mark

Block 132

Looking up
bob gives
 I-node 26

26 .
 6 ..
12 grants
81 books
60 mbox
17 Linux

Aha!
I-node 60

I-node 6

406

I-node 26

/usr is in
block 132

Block 406

/usr/bob is
in block 406

5

Storing Files

F Possibilities:
– a) Directory entry contains disk blocks?
– b) Directory entry points to attributes structure?
– c) Have new type of file “link”?

B C

B ? B B

Directed
Acyclic
Graph

“alias”

Problems

F a) Directory entry contains disk blocks?
– contents (blocks) may change

F b) Directory entry points to attributes structure?
– if removed, refers to non-existent file
– must keep count, remove only if 0
– hard link

F c) Have new type of file “link”?
– overhead, must parse tree second time
– soft link

Outline

F Files 4
F Directories 4
F Disk space management ←
F Misc

Disk Space Management

F n bytes
– contiguous
– blocks

F Similarities with memory management
– contiguous is like segmentation

u but moving on disk very slow!
u so use blocks

– blocks are like paging
u how to choose block size?

Choosing Block Size

F Large blocks
– wasted space (internal fragmentation)

F Small blocks
– more seek time since more blocks

Data Rate

Disk Space
 Utilization

Block size

Keeping Track of Free Blocks
F Two methods

– linked list of disk blocks
u one per block or many per block

– bitmap of disk blocks

F Linked List of Free Blocks (man per block)
– 1K block, 16 bit disk block number

u = 511 free blocks/block
u 200 MB disk needs 400 blocks = 400k

F Bit Map
u 200 MB disk needs 20 Mbits
u 30 blocks = 30 K
u 1 bit vs. 16 bits

(note, these are
stored on the disk)

6

Tradeoffs

F Only if the disk is nearly full does linked
list scheme require fewer blocks

F If enough RAM, bitmap method preferred
F If only 1 “block” of RAM, and disk is full,

bitmap method may be inefficient since
have to load multiple blocks
– linked list can take first in line

File System Performance
F Disk access 100,000x slower than memory

– reduce number of disk accesses needed!

F Block/buffer cache
– cache to memory

F Full cache? FIFO, LRU, 2nd chance …
– exact LRU can be done

F LRU inappropriate sometimes
– crash w/i-node can lead to inconsistent state
– some rarely referenced (double indirect block)

Modified LRU

F Is the block likely to be needed soon?
– if no, put at beginning of list

F Is the block essential for consistency of file
system?
– write immediately

F Occasionally write out all
– sync

Outline

F Files 4
F Directories 4
F Disk space management 4

F Misc ←
– partitions (fdisk, mount)
– maintenance
– quotas
– Linux
– WinNT

Partitions
F mount , unmount

– load “super-block”
– pick “access point” in file-system

F Super-block
– file system type
– block Size
– free blocks
– free inodes

/

usr
home tmp

Partitions: fdisk

F Partition is large group of sectors allocated
for a specific purpose
– IDE disks limited to 4 physical partitions
– logical partition inside physical partition

F Specify number of sectors to use
F Specify type

– magic number recognized by OS

7

File System Maintenance
F Format:

– create file system structure: super block, inodes
– format (Win), mke2fs (Linux)

F “Bad blocks”
– most disks have some
– scandisk (Win) or badblocks (Linux)
– add to “bad-blocks” list (file system can ignore)

F Defragment
– arrange blocks efficiently

F Scanning (when system crashes)
– lost+found, correcting file descriptors...

Disk Quotas

F Table 1: Open file table in memory
– when file size changed, charged to user
– user index to table 2

F Table 2: quota record
– soft limit checked, exceed allowed w/warning
– hard limit never exceeded

F Overhead? Again, in memory
F Limit: blocks, files, i-nodes

Linux Filesystem: ext2fs
F “Extended

(from minix)
file system
vers 2”

F Uses inodes
– mode for file,

directory,
symbolic link
...

Linux filesystem: blocks
F Default is 1 Kb blocks

– small!

F For higher performance
– performs I/O in chunks (reduce requests)
– clusters adjacent requests (block groups)

F Group has:
– bit-map of
free blocks
and inodes
– copy of
super block

Linux Filesystem: directories

F Special file with names and inodes

Linux filesystem: proc
F contents of “files” not stored, but computed
F provide interface to kernel statistics
F allows access to

“text” using Unix tools
F enabled by

“virtual file system”

8

WinNT Filesystem: NTFS

F Basic allocation unit called a cluster (block)
F Each file has structure, made up of attributes

– attributes are a stream of bytes
– stored in Master File Table, 1 entry per file
– each has unique ID

u part for MFT index, part for “version” of file for
caching and consistency

F Recover via “transaction” where they have a
log file to restore redo and undo information

