Operating Systems

File Systems
(Ch 10.1-10.4, Ch 11.1-11.5)

Motivation

+ Process store, retrieve information

+ Process capacity restricted to vmem size
+ When process terminates, memory lost
+ Multiple processes share information

+ Requirements:
—large
— persistent
— concurrent access

Outline
+ Files -
+ Directories
+ Disk space management
+ Misc

File Systems

+ Abstraction to disk (convenience)

—“The only thing friendly about a disk isthat it
has persistent storage.”

— Devices may be different: tape, IDE/SCSI, NFS
+ Users
—don't care about detail
— care about interface
+ 0OS
— cares about implementation (efficiency)

File System Concepts

+ Files - store the data

+ Directories - organize files

+ Partitions - separate collections of
directories (also called “volumes”)
— all directory information kept in partition
—nount file systemto access

directories, partitions

Files: The User’s Point of View

+ Naming: how do | refer to it?
—blah, BLAH, Blah
—file.c, file.com

+ Structure: what’ s inside?
— Sequence of bytes (most modern OSes)
— Records - some internal structure
— Tree - organized records

Files: The User’s Point of View

+ Type:
— ascii - human readable
— binary - computer only readable
—“magic number” (executable, c-file...)
+ Access Method:

— sequentia (for character files, an abstraction of
1/0 of serial device such as amodem)

block device such as a disk)
+ Attributes:
— time, protection, owner, hidden, lock, size mmm,

File Operations
+ Create + Seek - for random access
+ Delete + Get attributes
+ Truncate + Set attributes
+ Open
+ Read
+ Write
+ Append

Example: Unix open()
int open(char *path, int flags [, int node])

+ pat h is name of file
+ fl ags ishitmap to set switch

—O_RDONLY, O WRONLY...
— O_CREATE then use node for perms

+ success, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags);
read(fid, .);

W N PO

File Structure t

(index) (attributes)

Example: WINNT Creat eFi |l e()

+ Returnsfile object:
HANDLE CreateFile (
IpFileName, // name of file
dwDesiredAccess, // read-write
dwShareMode, // shared or not
IpSecurity, // permissions

)

+ File objects used for all: files, direct
disk drives, ports, pipes, socketsand \U/ "7,
console

File System Implementation

Process Open File File Descriptor Disk
Descriptor Table Table

Open
File
Pointer
Array

(per process)

Next up: file descriptors!

File System Implementation

+ Which blocks with which file?
+ File descriptors:

— Contiguous
— Linked List ©
— Linked List with Index HEN[
_l- RN
I-nodes - EEEE
Des:ri?)tor — %%EE
<

Linked List Allocation
+ Keep alinked list with disk blocks

+ Bad:

Contiguous Allocation

+ Store file as contiguous block

—ex: w/ 1K block, 50K file has 50 coneq blocks
File A: start O, length 2
File B: start 14, length 3

+ Good:
— Easy: remember 1 number (location)
— Fast: read entire file in one operation (length)
+ Bad:

— Static: need to know file size at creatiofi™
« or tough to grow!

— Slow: random access bad

Linked List Allocation with

[-nodes

. single
i-node indirect block

+ Fast for small
files

+ Can hold big files

+ Size?

double indirect — 4 kbyte block

attributes

Disk Addresses

triple indirect
block

Index
Physical
Block .
%C + Table in memory
1 — faster random access
2 — can be large!
3 « 1k blocks, 500K disk
4 +=2MB!
5 —MS-DOS FAT
6
7
Outline
+ Files v
+ Directories -
+ Disk space management
+ Misc

Directories

+ Just likefiles, only have special bit set so
you cannot modify them (what?!)
— datain directory isinformation / links to files
+ Organized for:
— efficiency - locating file quickly
— convenience - user patterns
« groups (.c, .exe), same names

+ Tree structure directory the most fl 4;
— dliases allow files to appear at moreth d

location

Directories

+ Before reading file, must be opened
+ Directory entry provides information to get
blocks
— disk location (block, address)
— i-node number
+ Map asci i nameto thefile descripto

Simple Directory

+ No hierarchy (all “root™)
+ Entry

— name

— block count

— block numbers

block numbers

Hierarchical Directory (MS-DOS)

+ Tree

+ Entry:
— name - date
—type (extension) - block number (W/FAT)
—time

Hierarchical Directory (Unix)

+ Tree
+ Entry:
— hame
— inode number
+ example:
/ usr/ bob/ nbox

Unix Directory Example

Root Directory Block 132

Block 406
I-node 6 . I-node 26 .
I Looking up I
Looking up L bob gives .
usr gives élusrkl 51';2 I-node26 lusr/bobis
I-node 6 ocl in block 406

Storing Files

Directed
Acyclic
Graph

+ Possihilities:
— a) Directory entry contains disk bl ocks
— b) Directory entry pointsto attributes ~(¢‘ re?
— ¢) Have new type of file “link”? '

Problems

+ a) Directory entry contains disk blocks?
— contents (blocks) may change

+ b) Directory entry pointsto attributes structure?
— if removed, refersto non-existent file
— must keep count, remove only if 0
— hard link

+ ¢) Have new type of file “link”?
— overhead, must parse tree second time
— soft link

6

Disk Space Management

+ nbytes
— contiguous
— blocks
+ Similarities with memory management
— contiguous is like segmentation
« but moving on disk very slow!
« S0 use blocks
— blocks are like paging
« how to choose block size?

Outline
+ Files v
+ Directories v
+ Disk space management -
+ Misc
Choosing Block Size

+ Large blocks

— wasted space (internal fragmentation)
+ Small blocks

— more seek time since more blocks

Disk Space
Utilization

Data Rate

Block Size em——>

Keeping Track of Free Blocks

+ Two methods (note, these are
— linked list of disk blocks stored on the disk)
« one per block or many per block
— bitmap of disk blocks

+ Linked List of Free Blocks (man per block)

— 1K block, 16 hit disk block number
« = 511 free blocks/block
+ 200 MB disk needs 400 blocks = 400k

+ Bit Map
+ 200 MB disk needs 20 Mbits
+ 30 blocks=30 K

1 bt 16 kit

Tradeoffs

+ Only if the disk is nearly full does linked
list scheme require fewer blocks

+ If enough RAM, bitmap method preferred

+ If only 1 “block” of RAM, and disk isfull,
bitmap method may be inefficient since
have to load multiple blocks
— linked list can take first inline

File System Performance

+ Disk access 100,000x slower than memory
— reduce number of disk accesses needed!

+ Block/buffer cache
— cache to memory

+ Full cache? FIFO, LRU, 2nd chance ...
— exact LRU can be done

+ LRU inappropriate sometimes
— crash w/i-node can lead to inconsistent d,
— some rarely referenced (double indirect\k

Modified LRU

+ Isthe block likely to be needed soon?
—if no, put at beginning of list

+ Isthe block essential for consistency of file
system?
—write immediately

+ Occasionally write out all
—sync

Outline

+ Files v
+ Directories v
+ Disk space management v
+ Misc

— partitions (f di sk, nount)

— maintenance

— guotas

— Linux

—WiInNT

J

Partitions

+ hount , unnount
— load “ super-block”
— pick “access point” in file-system /
+ Super-block / ‘ \
— file system type usr
— block Size o
— free blocks =

—freeinodes

tmp

home

Partitions: f di sk

+ Partition is large group of sectors allocated
for a specific purpose
— IDE disks limited to 4 physical partitions
— logical partition inside physical partition
+ Specify number of sectorsto use
+ Specify type
— magic number recognized by OS

File System Maintenance

+ Format:
— create file system structure: super block, inodes
—format (Win), nke2f s (Linux)
+ “Bad blocks’
— most disks have some
—scandi sk (Win) or badbl ocks (Linux)

+ Defragment
— arrange blocks efficiently

+ Scanning (when system crashes)
— lost+found, correcting file descriptors...

Disk Quotas

+ Table 1: Open file table in memory
— when file size changed, charged to user
— user index to table 2
+ Table2: quotarecord
— soft limit checked, exceed allowed w/warning
— hard limit never exceeded
+ Overhead? Again, in memory
+ Limit: blocks, files, i-nodes

Linux Filesystem: ext2fs
+ “ Extended
(from minix) ——

file system
vers 2"

+ Usesinodes

—modefor file,
dIrECtor_y‘) Tndirect blocks
symbolic link St

Diteet Blocks

b

“Triple Tndicect

-
I FIE

Linux filesystem: blocks
+ Default is 1 Kb blocks
— small!
+ For higher performance
— performs 1/0 in chunks (reduce requests)
— clusters adjacent requests (block groups)
+ Group has:
— bit-map of
free blocks
and inodes

— copy of

super block

Linux Filesystem: directories

+ Specia file with names and inodes

0 15 55

[A]5]5 [6 [e[[y iors rane]

Linux filesystem: proc
+ contents of “ files’” not stored, but computed
+ provide interface to kernel statistics
+ allows accessto
“text” using Unix tools
+ enabled by
“virtual file system”

WINNT Filesystem: NTFS

+ Basic alocation unit called a cluster (block)

+ Each file has structure, made up of attributes
— attributes are a stream of bytes
— stored in Master File Table, 1 entry per file
— each has unique ID
« part for MFT index, part for “ version” of file fo
caching and consistency &
+ Recover via“transaction” Whereth /€
log file to restore redo and undo inforn ati

