
1

Operating Systems

Introduction

Topics

F What is an OS?

F OS History

F OS Concepts

F OS Structures

Let’s Get Started!

F What are some OSes you know?

F Pick an OS you know:
– What are some things you like about it?

– What are some things you don’t like about it?

What is an Operating System?

Applications

System
Programs

Hardware

Physical Devices

Microprogramming

Machine Language

Operating System

Compilers Editors Shell

Bank Program Reservation Game

What is an Operating System?
F An Extended Machine (Top-down)

– Transforming - new resource
u ex: Win98 device manager

F A Resource Manager (Bottom-up)
– Multiplexing - illusion of several resources

u ex: browse the web AND read email

– Scheduling - deciding who gets what when
u ex: compile fast OR edit fast

F Why have an OS?
– Convenient and Efficient

u Programming hardware difficult

u Idle hardware “wasteful”

OS History

F Helps understand key requirements
– Not one brilliant design

u (despite what Gates or Torvalds might say)

– Fixed previous problems, added new ones

– Tradeoffs

F Closely tied to:
– Hardware history

– User history

2

Hardware History
1981 1999 Factor

Power (SPEC) 1 250 250

$/Power $100K $45 2200

Memory 128K 128M 1000

Disk Capacity 10M 10G 1000

Net Bandwidth 9600b/s 155Mb/s 15000

Users / Mach. 10s <=1 10

F Comments? Change!

Hardware Very Expensive
Humans Cheap

F Single program execution (no OS)

F Hardwire “programming”

F Programming slow, not “offline”!
– Punch cards

Hardware Very Expensive
Humans Cheap

F Punch cards

F Fortran or assembler

F Waste computer time walking!
– Batch programs on tape

Hardware Very Expensive
Humans Cheap

F Programs read in from tape

F Two applications:
– Scientific

– Data processing

F CPU idle during I/O!
– Multiprogramming with partitions

– Spooling as jobs finished

Hardware is Cheap
Humans Expensive

F Turn around time 1/2 day

F Programmer time wasted!
“Sigh. In the good old days….”

– Time-sharing

– Multics (sorta)

– New problems
u response time

u thrashing

u file-systems

Hardware Very Cheap
Humans Very Expensive

F Personal computers
– Network operating systems

– Distributed operating systems

F OSes today
– small == 1000K (15 pages, 5 programmer years)

– large == 10,000K (150 pages, 500 programmer
years) (longer than a semester :-))

– need to evolve quickly
u hardware upgrades, new user services, bug fixes

– efficient and/or modular kernels

3

Windows NT History

F 1988, v1
– split from joint work with IBM OS/2

– Win32 API

F 1990, v3.1
– Server and Workstation versions

F 1997(?), v4
– Win95 interface

– Graphics to kernel

– More NT licenses sold than all Unix combined

Windows NT Today
F Microsoft has 80% to 90% of OS market

– mostly PC’s

F 500+ MHz Intel Pentium

F NT aiming at robust, server market
– network, web and database

F Platforms
– Intel 386+ - Alpha

– MIPS R4000 - PowerPC

– (Dropping 64-bit)

F (Win2000 merges Win98 and WinNT)

Linux History
F Open Source

– Release Early, Release Often, Delegate

– “The Cathedral or the Baazar”

F Bday 1991, Linus Torvalds, 80386 processor
– v.01, limited devices, no networking,

– with proper Unix process support!

F 1994, v1.0
– networking (Internet)

– enhanced file system (over Minix)

– many devices, dynamic kernel modules

Linux History
F Development convention

– Odd numbered minor versions “development”

– Even numbered minor versions “stable”

F 1995, v1.2
– more hardware

– 8086 mode (DOS emulation) included

– Sparc, Alpha, Mips support started

F 1996, v2.0
– multiple architectures, multiple processors

– threads, memory management ….

Linux Today

F v2.2

F 1,000,000 lines of code

F 7-10 million users

F Estimated growth 25%/year through 2003
– all others, 10% combined

Where are we?

F Ch 1-3 by Monday
– Reading details on course Web page

– Ch 1, brief, alternate viewpoint

– Ch 2, computer architecture review

– Ch 3, today and Monday

F Timeline on Web page
– Proj 0 in by Monday

– Proj 1 out Monday

– HW 1 out Tuesday

4

Operating System Concepts

F Processes

F Files

F System Calls

F Shells

The Process

F Program in execution

F Running -> Suspended -> Running

F Example: the Shell

F Process “Tree”

F Signals

F UID (GID)

F (Two weeks)

login

csh csh

gcc emacs

pre ln

Files

F Store data on disk

F Directory “Tree”

F Working directory

F Protection bits
– 9 in Unix: rwx bits, ex: rwxr-x--x

F Abstraction of I/O device
– terminal, printer, network, modem

F Pipe

F (1-2 Weeks)

root

bob sue

www fun3013

System Calls

F Way processes communicate with OS

F example:
write(file, string, size)

F OS specific!

F POSIX (1980s)
– Portable Operating System (unIX-ish)

F (Most of the projects)

Shells

F User’s interface to OS

F Simple commands
“cd”, “cat”, “top”

F Modifiers
‘&’, ‘|’, ‘>‘

F (Project 1 is to write a shell)

Operating System Structure

F Simple Systems

F Virtual Machines

F Micro Kernels

5

Simple Systems

F Started small and grew, no hardware support

F MS-DOS

F Protection!

Application

Resident system program

Device drivers

ROM BIOS device drivers

Simple Systems

F Unix (see /vmunix)

F “The Big Mess”

F Some move towards a more modular kernel

Applications

Signals, File Sys, Swapping, Scheduling ...

Terminal Device Memory

Virtual Machines

F Complete protection

F OS development, emulation

F Performance!

Process

Operating Sys

Virtual Machine

Hardware

Operating Sys Operating Sys

Process
Process
Process

Process

Process

F IBM VM/370

Virtual Machines

F Java Virtual Machine

Java OS

Java VM

Operating System

Hardware

Process Process

Java program

F Platform independence!

Micro Kernel

F Client-Server

F Good performance

F Adaptable to distributed OS

F Robust

F Careful about mechanism!

F Mach

User Process File Server Mem Server

Kernel

WinNT Structure

Scheduler

Memory Manager

IPC

Security

File System

Kernel Space

Executive /
Privileged

Space

User Level
Space

I/O

Netscape
Win32

Subsystem

“Pseudo-
Micro Kernel”

6

Linux Structure
F “Simple” system

Applications, User Space

Kernel

Terminal Device Memory

ppp cdrom

F Loadable Modules
– done after “boot”

– allow 3rd party vendors

– easier for development

System Libraries

