Operating System

I nter-Process Communication

IPC

+ How does one process communicate with

another process?

— semaphores -- signal notifies waiting process

— software interrupts -- process notified
asynchronously

— pipes -- unidirectional stream communication

— message passing -- processes send and rgee
messages.

Software Interrupts

+ Similar to hardware interrupt.

+ Processes interrupt each other (often for
system call)

+ Asynchronous! Stops execution then restarts
—cntl-C
— child process completes

— alarm scheduled by the process expires
« Unix: SIGALRM fromal arn() orsetiti e, (

Software Interrupts
+Sendlnterrupt (pid, num
— type numto processpi d,
—kil'l () inUnix
+ Handl el nt errupt (num handl er)
— type num use function handl! er
—signal () inUnix
+ Typical handlers:
—ignore
— terminate (maybe w/core dump)
— user-defined
+ (Hey, show demos!)

Unreliable Signals

+ Before POSIX.1 standard:
signal (SIG@NT, sig_int);

sig_int() {
/* re-establish handler */
signal (SIG@NT, sig_int);

}

+ Another signal could come bef
handler re-established!

Pipes
+ One process writes, 2nd process reads
1 %ls | nmore

1 create a pipe

2 create aprocess for | s command, settin
st dout to write side of pipe

3 create a process for nor e command,
st di n to read side of pipe

tUNg ¥

o




The Pipe

=1

+ Bounded Buffer
— shared buffer (Unix 4096K)
— block writes to full pipe
— block reads to empty pipe

The Pipe

+ Process inherits file descriptors from parent
— file descriptor 0 stdin, 1 stdout, 2 stderr

+ Process doesn't know (or care!) when reading
from keyboard, file, or process or writing to
terminal, file, or process

+ System calls:
—read(fd, buffer, nbytes) (scanf () built on top)
— write(fd, buffer, nbytes) (pri ntf () built g-tor
— pipe(rgfd) creates a pipe Ny

« rgfd array of 2 fd. Read from rgfd[0], write to\(gff
+ (Hey, show sample code!)




