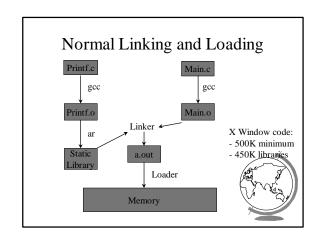
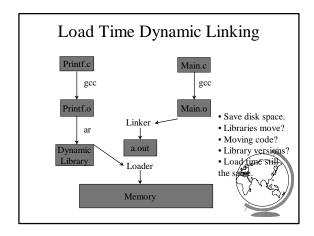
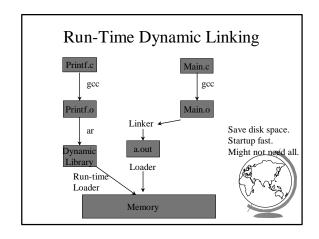
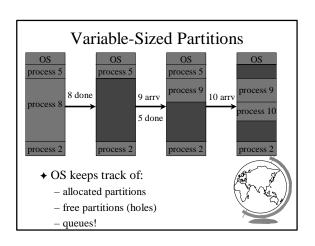

Object Module

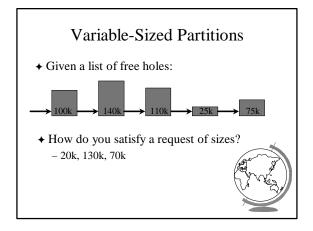

- → Information required to "load" into memory
- → Header Information
- → Machine Code
- **→** Initialized Data
- ◆ Symbol Table
- **→** Relocation Information
- ♦ (see SOS sample)

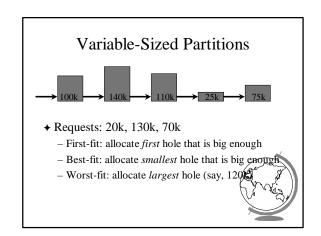



Linking an Object Module

- ◆ Combines several object modules into load module
- ◆ Resolve external references
- Relocation each object module assumes starts at 0. Must change.
- ◆ Linking modify addresses where one object refers to another (example external)

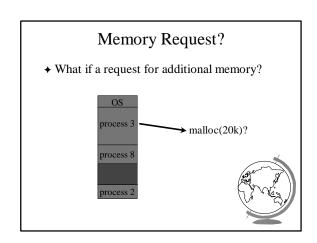

Memory Linking Performance Comparisons Linking Disk Load Run Time Method Space Time Time Time (0 used) (4 used) (2 used) 3Mb 3.1s 0 Load 1Mb 3.1s 0 Time Run 1Mb 1.1s 2.4s 1.2s

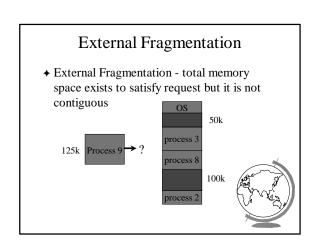

Design Technique: Static vs. Dynamic


- **→** Static solutions
 - compute ahead of time
 - for predictable situations
- ♦ Dynamic solutions
 - compute when needed
 - for unpredictable situations
- ◆ Some situations use dynamic because static too restrictive (malloc)
- ex: memory allocation, compilers, type checking, static variables

Variable-Sized Partitions

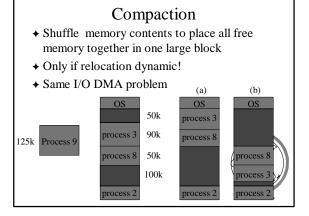
- ◆ Idea: want to remove "wasted" memory that is not needed in each partition
- **→** Definition:
 - Hole a block of available memory
 - scattered throughout physical memory
- ◆ New process allocated memory from hole large enough to fit it



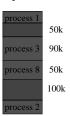


Variable-Sized Partitions

- ◆ First-fit: might not search the entire list
- ◆ Best-fit: must search the entire list
- ♦ Worst-fit: must search the entire list
- ◆ First-fit and Best-ft better than Worst-fit in terms of speed and storage utilization


Internal Fragmentation Have some "empty" space for each processes A stack Allocated to A A program OS Internal Fragmentation - allocated mannery may be slightly larger than requested memory and not being used.

Analysis of External Fragmentation


- **→** Assume:
 - system at equilibrium
 - process in middle
 - if N processes, 1/2 time process, 1/2 hole
 - ♦ ==> 1/2 N holes!
 - Fifty-percent Rule
 - Fundamental:
 - ◆ adjacent holes combined
 - ◆ adjacent processes not combined

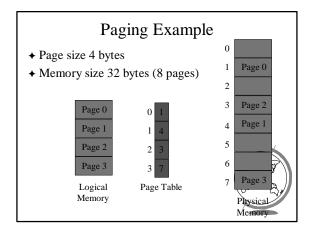
Cost of Compaction

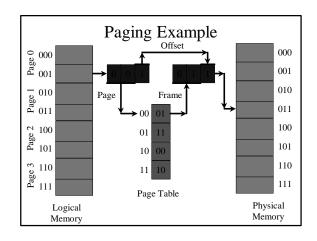
◆ Compaction of Memory vs. Swap (Disk)

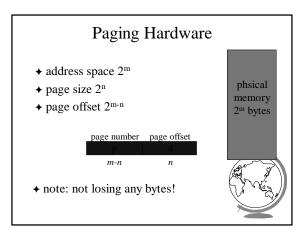
◆ Disk much slower!

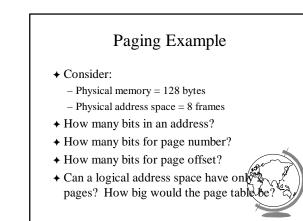
Solution?

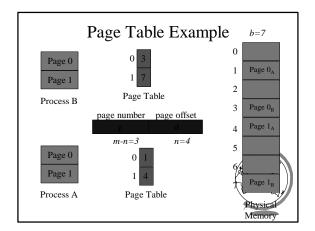
- ◆ Want to minimize external fragmentation
 - Large Blocks
 - But internal fragmentation!
- ◆ Tradeoff
 - Sacrifice some internal fragmentation for reduced external fragmentation
 - Paging

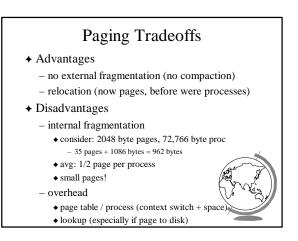


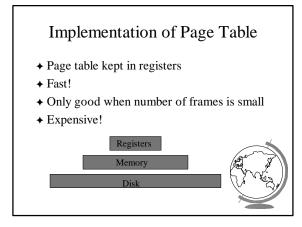

Paging

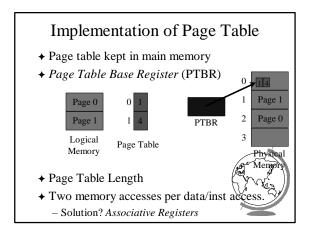

- ◆ Logical address space of a process can be noncontiguous; process is allocated memory wherever latter is available
 - Divide physical memory into fixed-size blocks
 - ◆ size is a power of 2, between 512 and 8192 bytes
 - ◆ called Frames
 - Divide logical memory into bocks of sand
 - ◆ called Pages

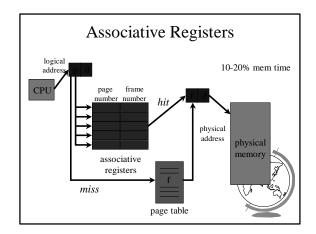


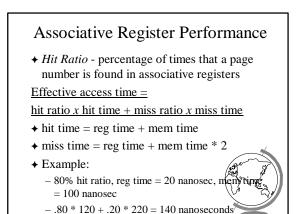

Paging Address generated by CPU divided into: - Page number (p) - index to page table • page table contains base address of each page in physical memory (frame) - Page offset (d) - offset into page/frame

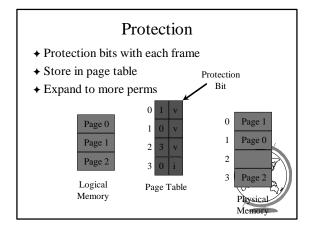


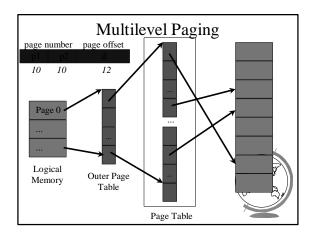






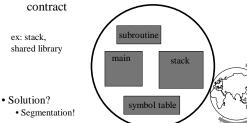




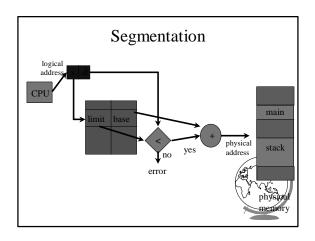


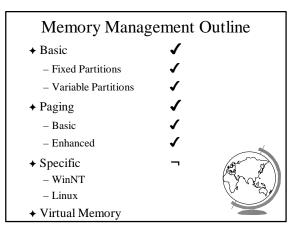
Large Address Spaces Typical logical address spaces: - 4 Gbytes => 2³² address bits (4-byte address) Typical page size: - 4 Kbytes = 2¹² bits Page table may have: - 2³² / 2¹² = 2²⁰ = 1 million entries Each entry 3 bytes => 3MB per process Do not want that all in RAM Solution? Page the page table - Multilevel paging

Multilevel Paging Performance


- → 2 memory access if miss
- **→** Effective access time?
 - 90% hit rate
 - -.80 * 120 + .20 * 320 = 160 nanoseconds

Memory View


- → Paging lost users' view of memory
- ◆ Need "logical" memory units that grow and



Segmentation

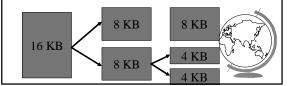
- ◆ Logical address: <segment, offset>
- ◆ Segment table maps two-dimensional user defined address into one-dimensional physical address
 - base starting physical location
 - limit length of segment
- → Hardware support
 - Segment Table Base Register
 - Segment Table Length Register

Memory Management in WinNT

- → 32 bit addressess ($2^{32} = 4$ GB address space)
 - Upper 2GB shared by all processes (kernel mode)
 - Lower 2GB privater per process
- ◆ Page size is 4 KB (2¹², so offset is 12 bits)
- ◆ Multilevel paging (2 levels)
 - 10 bits for outer page table (page director)
 - 10 bits for inner page table
 - 12 bits for offset

Memory Management in WinNT

- ◆ Each page-table entry has 32 bits
 - only 20 needed for address translation
 - 12 bits "left-over"
- **→** Characteristics
 - Access: read only, read-write
 - States: valid, zeroed, free ...
- → Inverted page table
 - points to page table entries
 - list of free frames


Memory Management in Linux

- ◆ Page size:
 - Alpha AXP ha 8 Kbyte page
 - Intel x86 has 4 Kbyte page
- ◆ Multilevel paging (3 levels)
 - Even though hardware support on x86!

Memory Management in Linux

- ◆ Buddy-heap
- ◆ Buddy-blocks are combined to larger block
- → Linked list of free blocks at each size
- → If not small enough, broken down

Review

- ◆ What is a relocation register?
- ◆ What is external fragmentation? How to fix?
- ◆ Given fixed partitions. List three ways to handle a job that requests too much memory.

