
1

Operating Systems

Process Scheduling

(Ch 4.2, 5.1 - 5.3)

Schedulers

F Short-Term
– “Which process gets the CPU?”

– Fast, since once per 100 ms

F Long-Term (batch)
– “Which process gets the Ready Queue?”

F Medium-Term
– “Which Ready Queue process to memory?”

– Swapping

F We’ll be talking about Short-Term, unless
otherwise noted

CPU-IO Burst Cycle

add

read

(I/O Wait)
store

increment

write

(I/O Wait)
Burst Duration

Fr
eq

ue
nc

y

When does OS do Scheduling?

F Four times to re-schedule
1 Running to Waiting (I/O wait)

2 Running to Ready (time slice)

3 Waiting to Ready (I/O completion)

4 Termination

F #2 and #3 optional ==> “Preemptive”

F Timing may cause unexpected results
– updating shared variable

– kernel saving state

Question

F What performance criteria related to
processes should the scheduler seek to
optimize?
– Ex: CPU minimize time spent in queue

– Others?

Scheduling Criteria
1 CPU utilization (typically, 40% to 90%)

2 Throughput (processes/time, higher is better)

3 Waiting time (in queue, lower is better), or ...

3 Turn-around time (in queue plus run time)

F Maximize #1, #2 Minimize #3

F Note, response time often OS metric but is
beyond short-term scheduler
– Self-regulated by users (go home)

– Bounded ==> Variance!

2

Scheduling Algorithms

F General
– FCFS

– SFJ

– Priority

– Round-Robin

F Specific
– NT

– Linux

First-Come, First-Served
Process

A

B

C

Burst Time

8

1

1

0 8 9 10

A B C

F Avg Wait Time (0 + 8 + 9) / 3 = 5.7

Gantt
Chart

Shortest Job First

0 1 2 10

AB C

F Avg Wait Time (0 + 1 + 2) / 3 = 1

F Optimal Avg Wait

F Prediction tough … Ideas?

Process

A

B

C

Burst Time

8

1

1

Priority Scheduling

F Special case of SJF
Process

A

B

C

Burst Time

8

1

1

Priority

2

1

3

0 1 9 10

AB C

F Avg Wait Time (0 + 1 + 9) / 3 = 3.3

Priority Scheduling Criteria?

Priority Scheduling Criteria

F Internal
– open files

– memory requirements

– CPU time used - time slice expired (RR)

– process age - I/O wait completed

F External
– $

– department sponsoring work

– process importance

– super-user (root) - nice

3

Round Robin
F Fixed time-slice and Preemption

Process

A

B

C

Burst Time

5

3

3

B CA B C A B CA A

F Avg = (8 + 9 + 11) / 3 = 9.3

F FCFS? SJF?

8 9 11

SOS: Dispatcher

F How is the next process chosen?

F Line 79 has an infinite loop. Why?
F There is no return from the Dispatcher()

function call. Why not?

F See “TimerInterruptHandler()”

F Linux:
– /usr/src/linux/kernel/sched.c

– /usr/src/linux/include/linux/sched.h

– linux-pcb.h

Round Robin Fun

Process

A

B

C

Burst Time

10

10

10

F Turn-around time?
– q = 10

– q = 1

– q --> 0

More Round Robin Fun
Process

A

B

C

D

Burst Time

6

3

1

7

1 2 3 4 5 6 7
Time Quantum

A
vg

. T
ur

n-
ar

ou
nd

 T
im

e

Rule:
80% within
one quantum

Fun with Scheduling
Process

A

B

C

Burst Time

10

1

2

Priority

2

1

3

F Gantt Charts:
– FCFS

– SJF

– Priority

– RR (q=1)

F Performance:
– Throughput

– Waiting time

– Turnaround time

More Fun with Scheduling
Process

A

B

C

Arrival Time

0.0

0.4

1.0

Burst Time

8

4

1

F Turn around time:
– FCFS

– SJF

– q=1 CPU idle

– q=0.5 CPU idle

4

Multi-Level Queues

SystemPriority 1

Priority 2

Priority 3

Interactive

Batch

F Categories of processes, each at a priority level

F Run all in 1 first, then 2 …

F Starvation!

F Divide between queues: 70% 1, 15% 2 …

... ...

Multi-Level Feedback Queues

QueuePriority 1

Priority 2

Priority 3

Queue

Queue

1 Quantum

2 Quanta

4 Quanta

F Allow processes to move between prio levels

F Ex: time slice expensive but want interactive

F Consider process needing 100 quanta
– 1, 4, 8, 16, 32, 64 = 7 swaps!

F Favor interactive users
F Most general. Used in WinNT and Linux

...

Outline

F Processes 4

– PCB 4

– Interrupt Handlers 4

F Scheduling

– Algorithms 4

– WinNT ←←
– Linux

Windows NT Scheduling

F Basic scheduling unit is a thread
– For now, just think of a thread as a process

F Priority based scheduling per thread

F Preemptive operating system

F No shortest job first, no quotas

Priority Assignment
F NT kernel uses 31 priority levels

– 31 is the highest; 0 is system idle thread

– Realtime priorities: 16 - 31

– Dynamic priorities: 1 - 15

F Users specify a priority class:
u realtime (24) , high (13), normal (8) and idle (4)

– and a relative priority:
u highest (+2), above normal (+1), normal (0), below

normal (-1), and lowest (-2)

– to establish the starting priority

F Threads also have a current priority

Quantum

F Determines how long a thread runs once
selected

F Varies based on:
– NT Workstation or NT Server

– Intel or Alpha hardware

– Foreground/Background application threads
u NOTE: NT 4.0 increases quantum for foreground

threads while NT 3.5 increased priorities. Why?

5

Dispatcher Ready List

F Keeps track of all
threads in the ready
state

F Queue of threads
assigned to each level

F (Multi-level feedback
queue)

Dispatcher
Ready List

11

10

 9

 8

 7

Ready Threads

Selecting the Ready Thread

F Locates the highest priority thread that is
ready to execute

F Scans dispatcher ready list

F Picks front thread in highest priority
nonempty queue

F When is this like round robin?

Boosting and Decay

F When does the “feedback” occur?

F Boost priority
– Event that “wakes” blocked thread

– Boosts never exceed priority 15 for dynamic

– Realtime priorities are not boosted

F Decay priority
– by one for each quantum

– decays only to starting priority (no lower)

Starvation Prevention

F Low priority threads may never execute

F “Anti-CPU starvation policy”
– thread that has not executed for 3 seconds

– boost priority to 15

– double quantum

F Decay is swift not gradual after this boost

Linux Process Scheduling

F Two classes of processes:
– Real-Time

– Normal

F Real-Time:
– Always run Real-Time above Normal

– Round-Robin or FIFO

– “Soft” not “Hard”

Linux Process Scheduling

F Normal: Credit-Based
– process with most credits is selected

– time-slice then lose a credit (0, then suspend)

– no runnable process (all suspended), add to
every process:
credits = credits/2 + priority

F Automatically favors I/O bound processes

6

Questions

F True or False:
– FCFS is optimal in terms of avg waiting time

– Most processes are CPU bound

– The shorter the time quantum, the better

F What is the idle thread? Where did we see
it?

