Operating Systems

Process Scheduling
(Ch4.2,51-5.3)

Schedulers

+ Short-Term
—“Which process gets the CPU?’
— Fast, since once per 100 ms
+ Long-Term (batch)
— “Which process gets the Ready Queue?’
+ Medium-Term
—“Which Ready Queue process to memory?
— Swapping :

otherwise noted

CPU-10 Burst Cycle

add

read

(1/0 Wait)
store

i ncrement
wite
(1/0 Wait)

Frequency

Burst Duration

When does OS do Scheduling?

+ Four timesto re-schedule
1 Running to Waiting (1/0O wait)
2 Running to Ready (time slice)
3 Waiting to Ready (1/0 completion)
4 Termination
+ #2 and #3 optional ==> “Preemptive”
+ Timing may cause unexpected resul
— updating shared variable
— kernel saving state

4

Question

+ What performance criteriarelated to
processes should the scheduler seek to

optimize?

— Ex: CPU minimize time spent in queue

— Others?

Scheduling Criteria

1 CPU utilization (typically, 40% to 90%)

2 Throughput (processes/time, higher is better)
3 Waiting time (in queue, lower is better), or ...
3 Turn-around time (in queue plus run time)

+ Maximize#1, #2 Minimize #3

+ Note, response time often OS metric but i
beyond short-term scheduler
— Self-regulated by users (go home)
— Bounded ==> Variance!

Scheduling Algorithms

First-Come, First-Served

Process Burst Time
A 8
B 1
C 1
Gantt
o — [

+ Genera
- FCFS
—SFJ
— Priority
— Round-Robin
+ Specific
—NT
— Linux
Shortest Job First
Process Burst Time
A 8
B 1
C 1
Blel A
01 2 10

+AvgWait Time(0+1+2)/3=
+ Optimal Avg Wait
+ Prediction tough ... Ideas?

Priority Scheduling

+ Special case of SIF
Process Burst Time Priority

A 8 2
B 1 1
C 1 3

01 9 1o
+ AvgWait Time (0+1+9)/3=3.3

Priority Scheduling Criteria?

Priority Scheduling Criteria

+ Internal
—open files
— memory requirements

— CPU time used - time dlice expired (RR)

— process age - 1/O wait completed
+ Externa
-$

— department sponsoring work

— process importance
— super-user (root) - nice

Round Robin

+ Fixed time-dice and Preemption

Process Burst Time
A 5
B 3
C 3

+Avg=(8+9+11)/3=93
+ FCFS? SIF?

SOS: Dispatcher

+ How isthe next process chosen?

+ Line 79 has an infinite loop. Why?

+ Thereisno return from the Di spat cher ()
function call. Why not?

+ See“ TimerInterruptHandler()”

+ Linux:
—/usr/src/linux/kernel/sched.c
—Jusr/src/linux/include/linux/s
—1'i nux-pch. h

fy gl\
h\?:)

Round Robin Fun
Process Burst Time
A 10
B 10
C 10

+ Turn-around time?
-g=10
— q =1
-q--> 0

More Round Robin Fun

Fun with Scheduling
Process Burst Time Priority

A 10 2

B 1 1

C 2 3

+ Gantt Charts: + Performance:
—FCFS — Throughput

- Sk — Waiting timeg#
— Priority — Turnaround
-RR (g=1)

Process Burst Time
A 6
B 3
C 1
0 ’
=
B
3
b
Rule: <
80% within |
one quantum)
z 12 3 4 5 6 7
Time Quantum —
More Fun with Scheduling
Process Arrival Time Burst Time
A 0.0 8
B 0.4 4
C 1.0 1

+ Turn around time:
- FCFS
- SIF
—-g=1CPUidle
—g=0.5CPU idle

Multi-Level Queues
+ Categories of processes, each at apriority level

[PIOYE < sysem
[Pioiy2 < imecive
(PSS < pacn

+ Runallinifirst, then?2...
+ Starvation!
+ Divide between queues. 70% 1, 15% 2

Multi-Level Feedback Queues

+ Allow processes to move between prio levels
+ Ex: time dlice expensive but want interactive

-] oo
-) oo

+ Consider process needi ng 100 quéﬁia
-1,4,8, 16, 32,64 =7 swaps!

+ Favor interactive users

+ Most general. Used in WinNT and L i nuge—

Ouitline

+ Processes v

-PCB v

— Interrupt Handlers v
+ Scheduling

— Algorithms v

—WIinNT -

— Linux

Windows NT Scheduling

+ Basic scheduling unit is athread
— For now, just think of athread as a process
+ Priority based scheduling per thread
+ Preemptive operating system
+ No shortest job first, no quotas

Priority Assignment
+ NT kernel uses 31 priority levels
— 3listhe highest; 0 is system idle thread
— Realtime priorities: 16 - 31
— Dynamic priorities: 1 - 15
+ Users specify apriority class:
« realtime (24) , high (13), normal (8) and idle (4)

—and arelative priority: \

« highest (+2), above normal (+1), normal (0; Jé
normal (-1), and lowest (-2) f‘%

— to establish the starting priority
+ Threads also have a current priority

Quantum

+ Determines how long athread runs once
selected

+ Varies based on:
— NT Workstation or NT Server
— Intel or Alphahardware

— Foreground/Background application thread

« NOTE: NT 4.0 increases quantum for foreged
threads while NT 3.5 increased priorities.

Dispatcher Ready List

" Ready Threads
Dispatcher 1 _>._’. ' ﬁl(re:sjst:?tkhgfrealaldy
Ready List . State

e I
+ ;I\legjlg)—la/el ,v

Selecting the Ready Thread

+ Locates the highest priority thread that is
ready to execute

+ Scans dispatcher ready list

+ Picksfront thread in highest priority
nonempty queue

+ When isthis like round robin?

Boosting and Decay

+ When does the “feedback” occur?
+ Boost priority
— Event that “wakes’ blocked thread
— Boosts never exceed priority 15 for dynamic
— Realtime priorities are not boosted
+ Decay priority
— by onefor each quantum 4
— decays only to starting priority (no lowe

Starvation Prevention

+ Low priority threads may never execute
+ “Anti-CPU starvation policy”
— thread that has not executed for 3 seconds
— boost priority to 15
— double quantum

Linux Process Scheduling

+ Two classes of processes:
— Real-Time
— Norma
+ Real-Time:
— Always run Real-Time above Normal
— Round-Robin or FIFO
—“Soft” not “Hard”

Linux Process Scheduling

+ Normal: Credit-Based
— process with most credits is selected
— time-slice then lose a credit (0, then suspend)

— no runnable process (all suspended), add to
every process:
credits = credits/2 + priority

+ Automatically favors 1/0 bound process:

Questions

+ True or False:
— FCFSisoptimal in terms of avg waiting time
— Most processes are CPU bound
— The shorter the time quantum, the better

+ What istheidlethread? Where did we see
it? X

