Operating Systems

File Systems
(Ch10.1-104,Ch 11.1-11.5)

Motivation

® Processes store, retrieve information

* Process capacity restricted to vmem size
® When process terminates, memory |ost
* Multiple processes share information

* Requirements:

Outline
* Files -
¢ Directories
¢ Disk space management
* Misc

— large
— persistent,)
— concurrent access &)I Utl On’)
System!
File Systems

* Abstraction to disk (convenience)

—“The only thing friendly about adisk isthat it
has persistent storage.”

— Devices may be different: tape, IDE/SCSI, NFS
® Users

— don't care about detail

— care about interface
* OS

— cares about implementation (efficiency)

File System Concepts

* Files- storethedata

® Directories - organizefiles

* Partitions- separate collections of directories
(also called “volumes®)
— all directory information kept in partition
— mount file system to access

® Protection- alow/restrict access for files,
directories, partitions

Files: The User’s Point of View

* Naming: how do | refer toit?
— blah, BLAH, Blah
—filec, file.com
* Structure: what' sinside?
— Sequence of bytes (most modern OSes)
— Records - some interna structure
— Tree- organized records

Files: The User’s Point of View

* Type:

— ascii - human readable

— binary - computer only readable

— “magic number” or extension (executable, c-file...)
* Access Method:

— sequential (for character files, an abstraction of 1/0 of
serial device such asamodem)

— random (for block files, an abstraction of 1/0t
device such as adisk)

* Attributes:
— time, protection, owner, hidden, lock, size....

File Operations
* Create ® Seek - for random access
* Delete * Get attributes
® Truncate ® Set attributes
* Open
* Rexd
* Write S
* Append

Example: Unix open()
int open(char *path, int flags [, int node])

* pat h isnameof file
¢ f 1 ags ishitmapto set switch
— O_RDONLY, O_WRONLY ...
— O_CREATE then use node for perms

® SUCCESS, returns index

Unix open() - Under the Hood

int fid = open(“blah”, flags); i
read(fid, .); H

User Space

System Space

W N~ O

File Structure |

(index) (attributes)
(Per process) (Per device)

Example: WIinNT Cr eat eFi | e()

¢ Returnsfile object handle:
HANDLE CreateFile (
IpFileName, // name of file
dwDesiredAccess, // read-write
dwshareMode, // shared or not
IpSecurity, // permissions

)

* Fileobjectsused for al: files, direct
disk drives, ports, pipes, sockets and
console

File System Implementation

Process OpenFile File Descriptor Disk
Control Block Table Table

Open
File
Pointer
Array

(per process)
copy,
one per

Next up: file descriptors! device)

File System Implementation

* Which blockswith which file?
* File descriptor implementations:

— Contiguous
— Linked List O
— Linked List with Index |
— |-nodes (TIT]
o} e
Descriptor =_|r|_|>

Contiguous Allocation

* Storefile as contiguous block

—ex: w/ 1K block, 50K file has 50 conseq blocks
File A start 0, length 2
File B: start 14, length 3

¢ Good:
— Easy: remember location with 1 number
— Fast: read entire filein 1 operation (length)
* Bad:
— Static: need to know file size at credtio
+ or tough to grow!
— Fragmentation: remember why we had pi

Linked List Allocation
* Keepalinked list with disk blocks

Physical 4 7 2
Block
* Good:

6 3
— Easy: remember 1 number (location)
— Efficient: no spacelost in fragmentati
* Bad:
— Slow: random access bad

Linked List Allocation with

|-nodes

. single
i-node jngirect block

attributes

files

* Size?

Disk blocks

triple indirect
block

* Fast for small
® Can hold big files

— 4 kbyte block

/

Index
Physical
Block .
gc * Tablein memory
1 — faster random access
2 — can belarge!
3 + 1k blocks, 500K disk
4 +=2MB!
5 — MS-DOSFAT,
6 VFAT
7
Outline
* Files (done)
* Directories -
* Disk space management
* Misc

Directories

Directories
¢ Just likefiles, only have special hit set so you
cannot modify them (what?!) * Before reading file, must be opened
— datain directory isinformation/ linksto files * Directory entry providesinformation to get
— modify through system call blocks
— (Seels.c)) .
* Organized for: :i'iégﬁ:ggéfbl ock, address)
— efficiency - locating file quickly

— convenience - user patter ns
+ groups (.c, .exe), same names

* Tree structure directory the most flex

— dliases alow files to appear at more thandRe
location

Mapasci i nameto thefiledescript

Simple Directory Hierarchical Directory (MS-DOS)

* No hierarchy (all “root”)

* Tree
® Entry * Entry:
— name — name - date
— block count —type (extension) - block number (w/FAT)
— block numbers —time

block numbers

Hierarchical Directory (Unix) Unix Directory Example

Root Directory
® Tree

[usr/ bob/ mbox S

Block 132 Block 406
I-node 6 I-node 26
* Entry:
— name
— inode number (try “Is—-" or “Is—iad.”)
* example:

Looking up

Looking up bob gives
usr gives Relevant I-node 26
I-node 6 dat_a (_/usr)
isin
block 132

Storing Files

Directed

Acyclic
‘ Graph
* Posshilities:

“alias’
a) Directory entry contains disk blocks?
b) Directory entry points to attributes st

s
l.,, =
c) Havenew typeof file“link”?

Problems

* a) Directory entry contains disk blocks?
— contents (blocks) may change
* b) Directory entry pointsto file descriptor?
— if removed, refersto non-existent file
— must keep count, removeonly if O
— hardlink
— Similar if deletefilein use (show example)
* ¢) Have new typeof file*link”?
— contains alternate namefor file
— overhead, must parse tree second time
— soft link
— often have max link count in case |oop (show examp

Outline
* Files (done)
* Directories (done)
* Disk space management -

* Misc

Disk Space Management

® n bytes
— contiguous
— blocks

® Similarities with memory management
— contiguousislike variable-sized partitions

+ but moving on disk very slow!
+ 50 use blocks

— blocksarelike paging
+ how to choose block size?
* (Note, disk block size typically 512 bytes,
system logical block size chosen when for

Choosing Block Size

* Large blocks

— faster throughput, |ess seek time

— wasted space (internal fragmentation)
¢ Small blocks

— lesswasted space

— more seek time since more blocks

Disk Space
Utilization

Data Rate

BlOCK Size m—

Keeping Track of Free Blocks

* Two methods (note, these are
— linked list of disk blocks stored on the disk)
+ one per block or many per block
— bitmap of disk blocks
* Linked List of Free Blocks (many per block)
— 1K block, 16 bit disk block number
=511 free blocks/block
+ 200 MB disk needs 400 free blocks = 400k ¢
* BitMap
+ 200 MB disk needs 20 Mbits
+ 30 blocks = 30k
+ 1 bitvs. 16 bits

Tradeoffs

* Only if thedisk isnearly full doeslinked
list scheme require fewer blocks

* |f enough RAM, bitmap method preferred

¢ If only 1“block” of RAM, and diskisfull,
bitmap method may beinefficient since

haveto load multiple blocks :

—linked list can take first in line

File System Performance

* Disk access 100,000x slower than memory
— reduce number of disk accesses needed!
* Block/buffer cache
— cache to memory
* Full cache? FIFO, LRU, 2nd chance ...
— exact LRU can be done (why?)
* LRU inappropriate sometimes
— crash w/i-node can lead to inconsistent
— somerarely referenced (double indir

Modified LRU

¢ |sthe block likely to be needed soon?
—if no, put at beginning of list
¢ |stheblock essential for consistency of file
system?
— write immediately
® Occasionaly writeout all
—sync

Outline

* Files (done)
* Directories (done)
* Disk space management (done)
* Misc =

— partitions(f di sk, nount)

— maintenance

— quotas

* Linux and WinNT/2000

Partitions

* mount , unnount
— load “ super-block” from disk

— pick “access point” infile-system
/ (root)

* Super-block VAR
— file system type usr ho!ne tmp
— block size -
— freeblocks S
— freel-nodes

Partitions: f di sk

* Partition islarge group of sectors allocated for a
specific purpose
— IDE diskslimited to 4 physical partitions
— logical (extended) partition inside physical partition
® Specify number of cylindersto use
® Specify type
— magic number recognized by OS

(Hey, show example)

File System Maintenance
® Format:

— create file system structure: super block, I-nodes
— for mat (Win), nke2f s (Linux)

* “Badblocks’
— most disks have some
— scandi sk (Win) or badbl ocks (Linux)
— add to “bad-blocks” list (file system can ignore)
* Defragment 4
— arrange blocks efficiently
® Scanning (when system crashes)

— lost+found, correcting file descriptors...

Disk Quotas

¢ Table 1. Openfiletablein memory
— when file size changed, charged to user
— user index to table 2
® Table2: quotarecord
— soft limit checked, exceed allowed w/warning
— hard limit never exceeded .
* Overhead? Again, inmemory
* Limit: blocks, files, i-nodes

Linux Filesystem: ext2fs
* “Extended

(from minix) e —
file system e
vers2” J

* Usesinodes
— modefor file, o]
Ssl/rgcbtc())l?é'nnk s i

Linux filesystem: blocks

¢ Defaultis 1 Kb blocks
— small!

* For higher performance
— performs /O in chunks (reduce requests)
— clusters adjacent requests (block groups)

* Group has:
— bit-map of
free blocks
and I-nodes
— copy of

super block / \ '

Block
Bitmap

N

Block
Groupo

Block.
Gronp -1

Block,
Group

Super | Group Trcde | inede
Block | Descaptors Bitnap | Table

Linux Filesystem: directories

* Specid file with names andinodes

0 15 53

(A5 [ol [y o rame]

Linux Filesystem: proc

* contents of “files’ not stored, but computed
* provideinterfaceto kernel statistics
* alowsaccessto

“text” using Unix tools
* enabled by

“virtud file system”
(NT hasper f non)

WInNT Filesystem: NTFS

* Basic alocation unit called a cluster (block)
* Each file has structure, made up of attributes
— attributes are a stream of bytes
— stored inMaster File Table, 1 entry per file
— each hasunique D

+ part for MFT index, part for “version” of file for caching and
consistency

* Recover via“transaction” where they haveg
to restore redo and undo information

