Operating Systems

Memory Management
(Ch8.1-8.6)

Overview

* Provide Services (done)

— processes (done)
—files (done after memory)
* Manage Devices
— processor (done)
— memory (next!) s
—disk (done &fter files)

Simple Memory Management

* Oneprocessinmemory, usingitall
— each program needs /O drivers
— until 1960

1/O drivers
/
RAM @

Simple Memory Management

* Small, protected OS, drivers
- DOS

ROM
RAM I RAM RAM

® “Mono-programming” -- No multiprocessi
- Early efforts used “ Swapping”, but §

Multiprocessing w/Fixed Partitions

Simple!
900k
500k
300k
200k
@ ® A "
« Unequal queues -Wastelarg {8

* Skip small jok

| Hey, processes can be in different memory locations!

Address Binding

* Compile Time
— maybe absolute binding (. con)
® Link Time
— dynamic or static libraries
* Load Time
— relocatable code
* RunTime
— relocatable memory segments
— overlays
- paging

Compile

Logical vs. Physical Addresses

* Compile-Time + Load Time addresses same
* Runtimeaddressesdifferent

Logical Relocation
Address | Register

a0 7| 2000 |
®

MMU

® User goes from 0 to max
® Physical goesfrom R+0 to R+mex

Relocatable Code Basics

¢ Allow logical addresses
* Protect other processes

(o =@
no

error

>
physical
address

® Addresses must be contiguous!

Design Technique: Static vs. Dynamic

* Static solutions
— compute ahead of time
— for predictable situations
* Dynamic solutions
— compute when needed
— for unpredictable situations
* Some Situations use dynamic because
too restrictive (mal | oc)

* ex: memory allocation, type checkin

V ariable-Sized Partitions

* |dea: want to remove “wasted” memory that
isnot needed in each partition
* Déefinition:
— Hole - ablock of available memory
— scattered throughout physical memory
* New process allocated memory from
large enough tofit it

Variable-Sized Partitions

* OSkeepstrack of:
— allocated partitions
— free partitions (holes)
— queues!

V ariable-Sized Partitions

® Givenalist of free holes:

ol

* How do you satisfy arequest of sizes?
— 20k, 130k, 70k

Variable-Sized Partitions

BN .=

* Requests: 20k, 130k, 70k
— First-fit: allocate first hole that is big enough
— Best-fit: allocate smallest hole that is big
— Worst-fit: allocate largest hole (say, 12

Variable-Sized Partitions

* First-fit: might not search theentirelist
Best-fit: must search the entirelist
Worst-fit: must search the entirelist

First-fit and Best-ft better than Worst-fit in
terms of speed and storage utilization

Memory Request?

* What if areguest for additional memory?

I\maoqzok)v

Internal Fragmentation

* Have some*“empty” spacefor each
processes

Allocated to A Room for growth

® Internal Fragmentation - allocated

Gy
may bedlightly larger than request
memory and not being used.

External Fragmentation
* Externa Fragmentation - total memory

space existsto satisfy request but it isnot
contiguous

50k

100k

Analysis of External Fragmentation

* Assume;
— system at equilibrium
— processin middle
— if N processes, 1/2 time process, 1/2 hole
+==>1/2 N holes!
— Fifty-percentrule
— Fundamental:

+ adjacent holes combined
+ adjacent processes not combined

Compaction
* Shuffle memory contentsto placeal free
memory together in one large block

® Only if relocation dynamic!
* Samel/O DMA problem

50k
90k
125k
60k
100k

@

Cost of Compaction

50k
90k
60k
100k

® 128 MB RAM, 100nsed/access
=> 1.5 secondsto compact!
® Disk much dower!

Solution?

* Want to minimize externa fragmentation
— Large Blocks
— But internal fragmentation!
* Tradeoff
— Sacrifice some internal fragmentation for
reduced external fragmentation

— Paging

Analysis of External Fragmentation

* Assume:
— system at equilibrium
— processin middle
—if N processes, 1/2 time process, 1/2 hole
+==>1/2 N holes!
— Fifty-percent rule

— Fundamental:
+ adjacent holes combined
+ adjacent processes not combined

Compaction

¢ Shuffle memory contentsto placeall free
memory together in onelarge block

* Only if relocation dynamic!
* Same|/O DMA problem

50k
90k
125k
60k
100k

@

Cost of Compaction

50k
90k
60k
100k

= 128 MB RAM, 100nsed/access
=>» 1.5 secondsto compact!
= Disk much sower!

Solution?

¢ Want to minimize external fragmentation
— Large Blocks
— But internal fragmentation!

* Tradeoff

— Sacrifice some internal fragmentation for
reduced external fragmentation

— Paging

Where Are We?

* Memory Management

Paging

* L ogical address space noncontiguous,
process gets memory wherever available
— Divide physical memory into fixed-size blocks
+ sizeisapower of 2, between 512 and 8192 bytes
+ called Frames

— Divide logica memory into bocks of same size,;
+ called Pages @

— fixed partitions (done)
— linking and loading (done)
— variable partitions (done)
* Paging -
* Misc)
Paging

* Addressgenerated by CPU dividedinto:
— Page number (p) - index to page table

+ page table contains base address of each page in
physical memory (frame)

— Page offset (d) - offset into page/frame

pagetable

Paging Example

* Pagesize4 bytes 0
* Memory size 32 bytes (8 pages) 1
2
3
Logical Page Table
Memory P
M

N~ o o N

Paging Example
Offset

S 000 000

§ 001 001
010

< 010

5 011 011

& 100 100

§’ 101 101
110

g 110

g 111 111

Page Table
Logical Physical

Memory Memory

Paging Hardware

* address space 2™
* pagesize2"
* pageoffset2m™n

iie number iiie offset

mn n

® note: not losing any bytes!

'

Paging Example

* Condder:

— Physical memory = 128 bytes

— Physical address space = 8 frames
* How many bitsin an address?
* How many bitsfor page number?
* How many hitsfor page offset?

* Canalogical address space have onl
pages? How big would the page tab

Page Table Example ©=7

0
1

Process B Page Table
e number e of fset
mn=3 n=4
0
1
ProcessA Page Table

Si a M w N B O

Paging Tradeoffs

* Advantages
— no externa fragmentation (no compaction)
— relocation (now pages, before were processes)
¢ Disadvantages
— internal fragmentation
+ consider: 2048 byte pages, 72,766 byte proc
— 35 pages + 1086 bytes = 962 bytes
+ avg: 1/2 page per process
+ small pages!
— overhead
+ pagetable/ process (context switch + sp
+ lookup (especially if page to disk)

Another Paging Example

* Consider:
— 8bitsin an address
— 3bitsfor the frame/page number

* How many bytes (words) of physical memory?
How many frames are there?

How many bytesisapage?

How many bitsfor page offset?

If aprocess pagetableis 12 bits, how m
logical pages doesit have?

I mplementation of Page Table

* Pagetable kept inregisters

* Fast!

* Only good when number of framesissmall
* Expensive!

Implementation of Page Table

* Pagetable kept in main memory
* Page Table Base Register (PTBR)

Logical Page Table
Memory

* PageTableLength
* Two memory accesses per datalinst a
— Solution? Associative Registers

Associative Registers

10-20% mem time

page frame
number number hit

associative
registers

pagetable

Associative Register Performance

¢ Hit Ratio - percentage of timesthat apage
number isfound in associative registers

Effective accesstime=
hit ratio x hit time + missratiox misstime
* hit time=reg time + memtime

* misstime=reg time + memtime* 2

* Example:

— 80% hit ratio, reg time = 20 nanosec,
= 100 nanosec

—.80* 120 + .20 * 220 = 140 nanosecond

Protection

* Protection bits with each frame
* Storein pagetable

Protection
* Expand to more perms

/ Bit

0
1
2

Logical Page Table
Memory

Large Address Spaces

Typica logical address spaces:
— 4 Gbytes=> 2% address bits (4-byte address)
* Typical pagesize:
— 4 Kbytes= 22 bits
* Pagetable may have:
— 2%2]212=220=1million entries
® Each entry 3 bytes=> 3MB per process!
* Do not want that all in RAM L
* Solution? Page the page table
— Multilevel paging

Multilevel ing

iiie number iiie of f set

Logical
Memory

Page Table

Multilevel Paging Translation

outer page
table inner page
table

Inverted Page Table
* Pagetable mapsto physical addresses

* Still need page per process--> backing
* Memory accesses longer! (search +

Memory View

* Paging lost users' view of memory

* Need“logical” memory unitsthat grow and
contract

ex: stack,
shared library

* Solution?
» Segmentation!

Segmentation

* | ogica address: <segment, offset>

* Segment table - mapstwo-dimensiona user
defined addressinto one-dimensiona
physica address
— base - starting physical location
— limit - length of segment

* Hardware support
— Segment Table Base Register
— Segment Table Length Register

Segmentation

logical
addr

(“Er, what have we gained?’)
-> Paged segments!

Memory Management Outline
* Basic (done)
— Fixed Partitions (done)
— Variable Partitions (done)
* Paging (done)
—Basic (done)
— Enhanced (done)
* Specific - &
—WinNT
— Linux
* Virtuad Memory

Memory Management in WinNT

* 32 bit addresses (2% = 4 GB address space)
— Upper 2GB shared by all processes (kernel mode)
— Lower 2GB private per process

* Pagesizeis4 KB (212, so offsetis 12 hits)

* Multilevel paging (2 levels)
— 10 bitsfor outer page table (page directory) l
— 10 bitsfor inner page table
— 12 hitsfor offset

Memory Management in WinNT

® Each page-table entry has 32 bits
— only 20 needed for address translation
— 12 bits“left-over”
® Characteristics
— Access: read only, read-write
— States: valid, zeroed, free ...
* Inverted pagetable 4
— pointsto pagetable entries
— list of freeframes

Memory Management in Linux

* Pagesize

— AlphaAXP has 8 Kbyte page
— Intel x86 has4 Kbytepage
Multilevel paging (3 levels)
— Makes code more portable

— Even though no hardware support on x86!
+ “middle-layer” defined to be 1

Memory Management in Linux

* Buddy-hesp

* Buddy-blocks are combined to larger block
* Linked list of free blocks at each size

* |f not small enough, broken down

Object Module

* |nformation required to “load” into memory
* Header Information

* MachineCode

* Initialized Data

¢ Symbol Table ,
¢ Relocation Information

® (see SOS sample)

Linking an Object Module

Combines severa object modulesinto load
module

Resolve external references

Relocation - each object module assumes starts
at 0. Must change.

Linking - modify addresses where one

refers to another (example - external)

/

Loading an Object

* Resolve references of object module

On Disk In Memory

Normal Linking and Loading

gce gce
ar Linker <~ X Window code:
- 500K minimum
- 450K librari
Loader

Load Time Dynamic Linking

) « Save disk space.
o Linker < « Libraries move?

Loader

Run-Time Dynamic Linking

Startup fast.
Might n

Save disk space.

all.

Memory Linking Performance
Comparisons

Linking Disk Load Run Run Run Time
Method Space Time Time Time (O used)
sed

10

