Operating Systems

Virtua Memory
(Chapter 9)

Memory Management Outline

Motivation

* Logica address space larger than physical
memory
—2%2ghout 4GB insize
—“Virtua Memory”
— on specia disk
* Abstraction for programmer
¢ Pearformanceok?Examples:
— Unused libraries
— Error handling not used
— Maximum arrays

* Processes (done)
* Memory Management
—Basic (done)
— Paging (done)
— Virtua memory -
Demand Paging
® Features: Page out
— Less1/O needed
— Less memory needed
— Faster response
— Moreusers
* No pagesin memory
initially
— Pure demand Main Memory
paging

Paging Implementation

Validation
Bit

Logical Page Table
Memory

7
“What happenswhen accessinvalid page?

Accessing Invalid Pages

* Page not in memory
— interrupt OS => page fault
* OSlooksintable:
— invalid reference? =>abort
— not in memory? =>bringitin
* Get empty frame (from list)
* Write page from disk into frame
* Reset tables(set valid bit=1)
* Restart instruction




Performance of Demand Paging

* Page Fault Rate (p)
0<p<1.0 (nopagefaultsto every ref isafault)
* Page Fault Overhead
= write page in + update + restart
— Dominated by time to write pagein
* Effective Access Time

Performance Example

* Memory accesstime = 100 nanoseconds
* Pagefault overhead = 25 msec
¢ Pagefault rate = 1/1000
* EAT =(1)* 100+ p* (25 msec)

= (1-p) * 100 + p * 25,000,000

=100 + 24,999,900 * p

=100 + 24,999,900 * 1/1000 = 25 microseconds! ..
* Want lessthan 10% degradation

110> 100 + 24,999,900 * p

10> 24,999,9000 * p

p < .0000004 or 1 fault in 2,500,000 acct

No Free Frames

Page fault => What if no free frames?

— terminate process (out of memory)

— swap out process (reduces degree of multiprog)
— replace another page with needed page

— Page replacement

Page fault with page replacement:

— if free frame, use it

— else use agorithm to select victimframe .
— write page to disk

— read in new page

— change page tables

— restart process

Page Replacement
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Page Replacement Algorithms

Every system hasitsown
Want lowest page fault rate

Evaluate by running it on aparticular string
of memory references (reference string) and
computing number of page faults

Example: 1,2,34,1,2,51,2,34,5

First-In-First-Out (FIFO)
123412512345

3 Frames/ Process




First-In-First-Out (FIFO)

1,2,34,1,251,2345
4 5
3 Frames/ Process 13 9 Page Faults
2 4

How could we reduce the number of page faults?___xg

First-In-First-Out (FIFO)

123412512345
4 5
3 Frames/ Process 13 9 Page Faults
2 4

4 Frames/ Process

First-In-First-Out (FIFO)
1,2,34,1,251,2345
4 5
3 Frames/ Process 1 3 9 Page Faults

2 4

4 Frames/ Process

w N

GroupWork

* How e se can we reduce the number of page
faults?

— Try anew agorithm
1,2,34,1,251,2,34,5

/

4 Frames/ Process

Optimal

N

* Replace the page that will not be used for
thelongest period of time

12,34,1,251,234,5

4 Frames/ Process

Optimal

N

* Replace the page that will not be used for
thelongest period of time

123412512345

4 Frames/ Process




L east Recently Used

* Replacethe page that has not been used for
thelongest period of time

123412512345

L east Recently Used

* Replacethe page that has not been used for
thelongest period of time

12,34,1,2512345

8 Page Faults

- N framessub

LRU Implementation

¢ Counter implementation

— every page has a counter; every time pageis
referenced, copy clock to counter

— when a page needs to be changed, compare the
counters to determine which to change

® Stackimplementation

— keep astack of page numbers

— page referenced: move to top

— no search needed for replacement
¢ (Canwedo thisin software?)

LRU Approximations

¢ LRU good, but hardware support expensive
* Some hardware support by referencebit

— with each page, initialy =0

— when page isreferenced, set =1

— replace the one which is 0 (no order)

* Enhance by having 8 bitsand shiftin
— approximate LRU

Second-Chance

* FIFO replacement, but ...
— Get first in FIFO
— Look at reference bit

+ bit == 0then replace
+ bit == 1 then set bit = 0, get next in FIFO

* If page referenced enough, never replac
* Implement with circular queue

Second-Chance

@ (b)
0
ﬁ o
Next
Vicitm 0
0 ,

If al 1, degenerates to FIFO

[ N = B =




Enhanced Second-Chance

* 2-hits, referencebit and modify bit

* (0,0) neither recently used nor modified
— best page to replace

* (0,1) not recently used but modified
— needs write-out (“dirty” page)

* (1,0) recently used but “clean”
— probably used again soon

* (1,1) recently used and modified
— used soon, needs write-out

¢ Circular queuein each class-- (MacitQ

Counting Algorithms

¢ Keep acounter of number of references

— LFU - replace page with smallest count
+ if doesall in beginning, won't be replaced
+ decay values by shift

— MFU - replace page with largest count

+ smallest count just brought in and will probably be
used

+ lock in place for some time, maybe
* Not too common (expensive) and n
good

/

Page Buffering

* Pool of frames
— start new process immediately, before writing old
+ write out when systemidle
— list of modified pages
+ write out when systemidle
— pool of free frames, remember content .
+ page fault => check pool

Fixed Allocation

* Equal dlocation
— ex: 93frames, 5 procs = 18 per proc (3 in pool)
* Proportiona Allocation
— number of frames proportional to size
— ex: 64 frames, s1 = 10, s2 = 127
+f1=10/137x64=5
+f2=127/137x64=59

® Treat processes equal

Allocation of Frames

* How many fixed frames per process?
* Two allocation schemes:

— fixed allocation

— priority alocation

Priority Allocation

* Useaproportional schemebased on priority
* |f process generates apage fault
— select replacement a process with lower
priority
* “Global” versus“Loca” replacement
—local consistent (not influenced by others)
— global more efficient (used more often)




Thrashing

¢ |f aprocessdoes not have “enough” pages,
the page-fault rateisvery high
—low CPU utilization
— OSthinks it needs increased multiprogramming
— adds another processto system
* Thrashing iswhen aprocessis busy
Swapping pagesin and out

/

Thrashing

CPU
utilization

degree of muliprogramming

Cause of Thrashing

Why does paging work?
— Locality model
+ process migrates from one locality to another
+ localities may overlap
* Why does thrashing occur?
— sum of localities > total memory size
* How do wefix thrashing?
— Working Set Model
— Page Fault Frequency

Working-Set Model

* Working set window W = afixed number of
page references

— total number of pagesreferencesintime T
* D=sumof sizeof W's

Working Set Example

*T=5
*123231243474334112221

W&l,Z,S}/ W={3)4,7} vd;{i\zq /

— if Ttoo small, will not encompass locality

— if Ttoolarge, will encompass several localities
— if T=>infinity, will encompass entire program
if D > m=> thrashing, so suspend a proc
Modify LRU gppx to include Working

Page Fault Frequency

increase
number of
frames

upper bound

lower bound

Page Fault Rate

decrease
number of
fr 4

Number of Frames

* Establish“acceptable” page-fault rate
— If rate too low, process loses frame
— If rate too high, process gains frame




Outline

¢ Demand Paging Intro (done)

* Page Replacement Algorithms (done)
* Thrashing (done)

* Misc Paging

* WIinNT

* Linux

¢ “Application Performance Studies’

Prepaging

* Pure demand paging has many page faults
initialy
— use working set

— doescost of prepaging unused frames outweigh
cost of page-faulting?

Page Size
* Old - Page sizefixed, New -choose pagesize
* How do we pick theright page size? Tradeoffs:
— Fragmentation
— Tablesize
— Minimize I/O
+ transfer small (.1ms), latency + seek time large (10ms)
— Locdlity

+ small finer resolution, but more faults .
— ex: 200K process (1/2 used), 1 fault / 200k, 100K f:

* Historical trend towardslarger page s
— CPU, mem faster proportionally than di

Program Structure

* condder:
int A[1024][1024];
for (j=0; j<1024; j++)
for (i=0; i<1024; i++)

AliTLIl =0
® suppose:
— process has 1 frame
— 1 row per page

— =>1024x1024 page faults!

Program Structure

int A[1024][1024];
for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
Ali][j] = 0;
® 1024 pagefaults
® Stack vs. Hash table
* Compiler
— separate code from data :
— keep routines that call each other together
® LISP (pointers) vs. Pascal (no-pointers)

Priority Processes

* Consider

— low priority process faults,
+ bring pagein

— low priority processin ready queue for awhile,

waiting while high priority process runs

— high priority process faults

+ low priority page clean, not used in awhile .
=> perfect!

* Lock-bit (likefor 1/O) until used on




Real-Time Processes

* Real-time
— bounds on delay
— hard-redl time: systems crash, lives lost
+ air-traffic control, factor automation
— soft-real time: application sucks
+ audio, video
* Paging addsunexpected delays
—don'tdoit
— lock bits for real-time processes

Virtual Memory and WinNT/2000

* Page Replacement Algorithm
—FIFO
— Missing page, plus adjacent pages
* Working set
— defaultis30
— take victim frame periodically
— if no fault, reduce set sizeby 1
* Reservepool
— hard page faults
— soft page faults

Virtual Memory and WinNT/2000

* Shared pages
— level of indirection for easier updates
— samevirtua entry
* PageFile
— stores only modified logical pages
— code and memory mapped files on disk

/

Virtual Memory and Linux

* Regionsof virtual memory

— paging disk (normal)

— file (text segment, memory mapped file)
* Re-Examinefork() and exec()

— exec() creates new pagetable

— fork() copies page table

+ reference to common pages
+ if written, then copied

Virtual Memory and Linux

* Page Replacement Algorithm
— look in reserve pool for free frames
— reserves for block devices (disk cache)
— reserves for shared memory
— user-spaceblocks
— enhanced second chance (with more bits)
+ “dirty” pages not taken first
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Capacity Planning Then and Now

® Capacity Planning in the good old days
— used to be just mainframes
— simple CPU-load based queuing theory
— Unix
® Capacity Planning today
— distributed systems
— networks of workstations
— Windows NT
— MS Exchange, L otus Notes

Experiment Design

DoesNT have more hard page faults or

soft page faults?
* System * Experiments
— Pentium 133 MHz — PageFaults
— NT Server 4.0 _ Caching
— 64MB RAM ,
- IDE NTFS )
~ NTv40 * Andysis
— perfnon

* cl earmem

Page Fault Method

¢ “Work hard’
* Runlotsof applications, open and close
¢ All local access, not over network

Soft or Hard Page Faults?
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Caching and Prefetching

* Start process

— wait for “Enter”
* Start per f non
¢ Hit “Enter”
* Read14-K page
* Exit
* Repeat

Page Metrics with Caching On
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