Operating Systems

Virtua Memory
(Chapter 9)

Memory Management Outline

Motivation

* Logica address space larger than physical
memory
—2%2ghout 4GB insize
—“Virtua Memory”
— on specia disk
* Abstraction for programmer
¢ Pearformanceok?Examples:
— Unused libraries
— Error handling not used
— Maximum arrays

* Processes (done)
* Memory Management
—Basic (done)
— Paging (done)
— Virtua memory -
Demand Paging
® Features: Page out
— Less1/O needed
— Less memory needed
— Faster response
— Moreusers
* No pagesin memory
initially
— Pure demand Main Memory
paging

Paging Implementation

Validation
Bit

Logical Page Table
Memory

7
“What happenswhen accessinvalid page?

Accessing Invalid Pages

* Page not in memory
— interrupt OS => page fault
* OSlooksintable:
— invalid reference? =>abort
— not in memory? =>bringitin
* Get empty frame (from list)
* Write page from disk into frame
* Reset tables(set valid bit=1)
* Restart instruction

Performance of Demand Paging

* Page Fault Rate (p)
0<p<1.0 (nopagefaultsto every ref isafault)
* Page Fault Overhead
= write page in + update + restart
— Dominated by time to write pagein
* Effective Access Time

Performance Example

* Memory accesstime = 100 nanoseconds
* Pagefault overhead = 25 msec
¢ Pagefault rate = 1/1000
* EAT =(1)* 100+ p* (25 msec)

= (1-p) * 100 + p * 25,000,000

=100 + 24,999,900 * p

=100 + 24,999,900 * 1/1000 = 25 microseconds! ..
* Want lessthan 10% degradation

110> 100 + 24,999,900 * p

10> 24,999,9000 * p

p < .0000004 or 1 fault in 2,500,000 acct

No Free Frames

Page fault => What if no free frames?

— terminate process (out of memory)

— swap out process (reduces degree of multiprog)
— replace another page with needed page

— Page replacement

Page fault with page replacement:

— if free frame, use it

— else use agorithm to select victimframe .
— write page to disk

— read in new page

— change page tables

— restart process

Page Replacement

0

)
2

o

@ 3

=

Page Table

Page Table

0

w

Logical

Memory 1

Physical
Memory

Page Replacement Algorithms

Every system hasitsown
Want lowest page fault rate

Evaluate by running it on aparticular string
of memory references (reference string) and
computing number of page faults

Example: 1,2,34,1,2,51,2,34,5

First-In-First-Out (FIFO)
123412512345

3 Frames/ Process

First-In-First-Out (FIFO)

1,2,34,1,251,2345
4 5
3 Frames/ Process 13 9 Page Faults
2 4

How could we reduce the number of page faults?___xg

First-In-First-Out (FIFO)

123412512345
4 5
3 Frames/ Process 13 9 Page Faults
2 4

4 Frames/ Process

First-In-First-Out (FIFO)
1,2,34,1,251,2345
4 5
3 Frames/ Process 1 3 9 Page Faults

2 4

4 Frames/ Process

w N

GroupWork

* How e se can we reduce the number of page
faults?

— Try anew agorithm
1,2,34,1,251,2,34,5

/

4 Frames/ Process

Optimal

N

* Replace the page that will not be used for
thelongest period of time

12,34,1,251,234,5

4 Frames/ Process

Optimal

N

* Replace the page that will not be used for
thelongest period of time

123412512345

4 Frames/ Process

L east Recently Used

* Replacethe page that has not been used for
thelongest period of time

123412512345

L east Recently Used

* Replacethe page that has not been used for
thelongest period of time

12,34,1,2512345

8 Page Faults

- N framessub

LRU Implementation

¢ Counter implementation

— every page has a counter; every time pageis
referenced, copy clock to counter

— when a page needs to be changed, compare the
counters to determine which to change

® Stackimplementation

— keep astack of page numbers

— page referenced: move to top

— no search needed for replacement
¢ (Canwedo thisin software?)

LRU Approximations

¢ LRU good, but hardware support expensive
* Some hardware support by referencebit

— with each page, initialy =0

— when page isreferenced, set =1

— replace the one which is 0 (no order)

* Enhance by having 8 bitsand shiftin
— approximate LRU

Second-Chance

* FIFO replacement, but ...
— Get first in FIFO
— Look at reference bit

+ bit == 0then replace
+ bit == 1 then set bit = 0, get next in FIFO

* If page referenced enough, never replac
* Implement with circular queue

Second-Chance

@ (b)
0
ﬁ o
Next
Vicitm 0
0 ,

If al 1, degenerates to FIFO

[N = B =

Enhanced Second-Chance

* 2-hits, referencebit and modify bit

* (0,0) neither recently used nor modified
— best page to replace

* (0,1) not recently used but modified
— needs write-out (“dirty” page)

* (1,0) recently used but “clean”
— probably used again soon

* (1,1) recently used and modified
— used soon, needs write-out

¢ Circular queuein each class-- (MacitQ

Counting Algorithms

¢ Keep acounter of number of references

— LFU - replace page with smallest count
+ if doesall in beginning, won't be replaced
+ decay values by shift

— MFU - replace page with largest count

+ smallest count just brought in and will probably be
used

+ lock in place for some time, maybe
* Not too common (expensive) and n
good

/

Page Buffering

* Pool of frames
— start new process immediately, before writing old
+ write out when systemidle
— list of modified pages
+ write out when systemidle
— pool of free frames, remember content .
+ page fault => check pool

Fixed Allocation

* Equal dlocation
— ex: 93frames, 5 procs = 18 per proc (3 in pool)
* Proportiona Allocation
— number of frames proportional to size
— ex: 64 frames, s1 = 10, s2 = 127
+f1=10/137x64=5
+f2=127/137x64=59

® Treat processes equal

Allocation of Frames

* How many fixed frames per process?
* Two allocation schemes:

— fixed allocation

— priority alocation

Priority Allocation

* Useaproportional schemebased on priority
* |f process generates apage fault
— select replacement a process with lower
priority
* “Global” versus“Loca” replacement
—local consistent (not influenced by others)
— global more efficient (used more often)

Thrashing

¢ |f aprocessdoes not have “enough” pages,
the page-fault rateisvery high
—low CPU utilization
— OSthinks it needs increased multiprogramming
— adds another processto system
* Thrashing iswhen aprocessis busy
Swapping pagesin and out

/

Thrashing

CPU
utilization

degree of muliprogramming

Cause of Thrashing

Why does paging work?
— Locality model
+ process migrates from one locality to another
+ localities may overlap
* Why does thrashing occur?
— sum of localities > total memory size
* How do wefix thrashing?
— Working Set Model
— Page Fault Frequency

Working-Set Model

* Working set window W = afixed number of
page references

— total number of pagesreferencesintime T
* D=sumof sizeof W's

Working Set Example

*T=5
*123231243474334112221

W&l,Z,S}/ W={3)4,7} vd;{i\zq /

— if Ttoo small, will not encompass locality

— if Ttoolarge, will encompass several localities
— if T=>infinity, will encompass entire program
if D > m=> thrashing, so suspend a proc
Modify LRU gppx to include Working

Page Fault Frequency

increase
number of
frames

upper bound

lower bound

Page Fault Rate

decrease
number of
fr 4

Number of Frames

* Establish“acceptable” page-fault rate
— If rate too low, process loses frame
— If rate too high, process gains frame

Outline

¢ Demand Paging Intro (done)

* Page Replacement Algorithms (done)
* Thrashing (done)

* Misc Paging

* WIinNT

* Linux

¢ “Application Performance Studies’

Prepaging

* Pure demand paging has many page faults
initialy
— use working set

— doescost of prepaging unused frames outweigh
cost of page-faulting?

Page Size
* Old - Page sizefixed, New -choose pagesize
* How do we pick theright page size? Tradeoffs:
— Fragmentation
— Tablesize
— Minimize I/O
+ transfer small (.1ms), latency + seek time large (10ms)
— Locdlity

+ small finer resolution, but more faults .
— ex: 200K process (1/2 used), 1 fault / 200k, 100K f:

* Historical trend towardslarger page s
— CPU, mem faster proportionally than di

Program Structure

* condder:
int A[1024][1024];
for (j=0; j<1024; j++)
for (i=0; i<1024; i++)

AliTLIl =0
® suppose:
— process has 1 frame
— 1 row per page

— =>1024x1024 page faults!

Program Structure

int A[1024][1024];
for (i=0; i<1024; i++)
for (j=0; j<1024; j++)
Ali][j] = 0;
® 1024 pagefaults
® Stack vs. Hash table
* Compiler
— separate code from data :
— keep routines that call each other together
® LISP (pointers) vs. Pascal (no-pointers)

Priority Processes

* Consider

— low priority process faults,
+ bring pagein

— low priority processin ready queue for awhile,

waiting while high priority process runs

— high priority process faults

+ low priority page clean, not used in awhile .
=> perfect!

* Lock-bit (likefor 1/O) until used on

Real-Time Processes

* Real-time
— bounds on delay
— hard-redl time: systems crash, lives lost
+ air-traffic control, factor automation
— soft-real time: application sucks
+ audio, video
* Paging addsunexpected delays
—don'tdoit
— lock bits for real-time processes

Virtual Memory and WinNT/2000

* Page Replacement Algorithm
—FIFO
— Missing page, plus adjacent pages
* Working set
— defaultis30
— take victim frame periodically
— if no fault, reduce set sizeby 1
* Reservepool
— hard page faults
— soft page faults

Virtual Memory and WinNT/2000

* Shared pages
— level of indirection for easier updates
— samevirtua entry
* PageFile
— stores only modified logical pages
— code and memory mapped files on disk

/

Virtual Memory and Linux

* Regionsof virtual memory

— paging disk (normal)

— file (text segment, memory mapped file)
* Re-Examinefork() and exec()

— exec() creates new pagetable

— fork() copies page table

+ reference to common pages
+ if written, then copied

Virtual Memory and Linux

* Page Replacement Algorithm
— look in reserve pool for free frames
— reserves for block devices (disk cache)
— reserves for shared memory
— user-spaceblocks
— enhanced second chance (with more bits)
+ “dirty” pages not taken first

Mikhail Mikhailov

Ganga Kannan _Saqib Syed
Mark Claypool DivyaPrakash
David Finkel Sujit Kumar

WP BMC Software, Inc.

Capacity Planning Then and Now

® Capacity Planning in the good old days
— used to be just mainframes
— simple CPU-load based queuing theory
— Unix
® Capacity Planning today
— distributed systems
— networks of workstations
— Windows NT
— MS Exchange, L otus Notes

Experiment Design

DoesNT have more hard page faults or

soft page faults?
* System * Experiments
— Pentium 133 MHz — PageFaults
— NT Server 4.0 _ Caching
— 64MB RAM ,
- IDE NTFS)
~ NTv40 * Andysis
— perfnon

* cl earmem

Page Fault Method

¢ “Work hard’
* Runlotsof applications, open and close
¢ All local access, not over network

Soft or Hard Page Faults?

=
-
m
-
a
L]
w
w
m
L
-
l‘I
kS
el .
&
Y

|

i
18| !
PR A |
]

)T IEA e WLT e Wi e o G les DET

T T =] e e

Caching and Prefetching

* Start process

— wait for “Enter”
* Start per f non
¢ Hit “Enter”
* Read14-K page
* Exit
* Repeat

Page Metrics with Caching On

Hit Return Read =1 Exit FGIEl
button 4KB
L =1
x / Start
e Hit Return
[0 button
. e | /
Ly
m
= Exit
- |
il
W 3 F
s =
e AL Seemmge L) Wi W BT S T L]
[~ Srels Cramn T Pt et T
— R 5

YR PagaF it e
[T PR T TR o o R P T o

