File System Design for and
NSF File Server Appliance

Dave Hitz, James Lau, and
Michael Malcolm

Technical Report TR3002
NetApp
2002

http://www.netapp.com/tech_library/3002.html

(At WPI: http://www. wpi

CC/Help/Unix. html)

wpP

S N W

Introduction : NFS

® NFS File Server Appliance file systems
have different requirements than those
for a general purpose file system
- NFS access patterns different than local
file access patterns
® Network Appliance Corporation uses Write
Anywhere File Layout (WAFL)

WP

Introduction

® An appliance is a device designed to
perform a specific function

® Networking trend has been to use
appliances instead of general purpose
computers. Examples:
- routers from Cisco and Avici
- network terminals
- network printers

® New type of network appliance is an NFS
file server

TN =

WP

Introduction : WAFL

WAFL has 4 requirements
- Fast NFS service

- Support large file systems (10s of GB) that can
grow (can add disks)

- Provide high performance writes and support RAID
- Restart quickly, even after unclean shutdown

® NFS and RAID both strain write performance:

- NFS server must respond that data is written

- RAID must write parity bits also

R N N e

WP

S N W

Outline

® Introduction

® Snapshots : User Level

® WAFL Implementation
® Snapshots: System Level
® Performance

® Conclusions

(done)
(next)

WP

Introduction to Snapshots

® WAFL'sclaim to fame

® WAFL creates and deletes automatically at preset
times
- Up to 255 at once
]

® Copy-on-write to avoid duplicating blocks in the
active file system

® Uses:
- Users can recover files
- Sys admins can create backups from running system
- Restart quickly after unclean shutdown

WP

TN =

User Access to Snapshots

® Suppose accidentally removed file named “t odo™:

spike% Is Jut .snapshot/*/todo

-rw-r-r-- 1 hitz 52880 Oct 15 00:00 .snapshot/nightly.0/todo
-rw-r--r-- 1 hitz 52880 Oct 14 19:00 .snapshot/hourly.0/todo
-rw-r--- 1 hitz 52829 Oct 14 15:00 .snapshot/hourly.1/todo
-rw-r--- 1 hitz 55059 Oct 10 00:00 .snapshot/nightly.4/todo
-w-r--r- 1 hitz 55059 Oct 9 00:00 .snapshot/nightly.5/todo

® Can then recover most recent version:

spike% cp .snapshot/hourly.0/todo todo

® Note, snapshot directories (. snapshot) are
hidden in that they don't show up with | s

TN =

Snapshot Administration

® The WAFL server allows commands for sys admins
to create and delete snapshots, but typically done
automatically
® WPI, snapshots of /home:
- 7:00 AM, 10:00, 1:00, 4:00, 7:00, 10:00, 1:00 AM
- Nightly snapshot at midnight every day
~ Weekly snapshot is made on Sunday at midnight every
week
® Thus, always have: 7 hourly, 7 daily snapshots, 2 weekly
snapshots
claypool 32 ccc3=>>pad
/home/claypool/.snapshot
claypool 33 ccc3=>>Is
hourly.0/ hourly.3/ hourly.6/ nightly.2/ nightly.5/ weekly.1/

hourly.1/ hourly.4/ nightly.0/ nightly.3/ nightly.6/
hourly.2/ hourly.5/ nightly.1/ nightly.4/ weekly.0/ wp

R N N e

WAFL File Descriptors

® Inode based system with 4 KB blocks
® Inode has 16 pointers
® For files smaller than 64 KB:
- Each pointer points to data block
® For files larger than 64 KB:
- Each pointer points to indirect block
® For really large files:
- Each pointer points to doubly-indirect block

® For very small files, data kept in inode instead of
pointers

WP
Outline
® Introduction (done)
® Snapshots : User Level (done)
® WAFL Implementation (next)
® Snapshots: System Level
® Performance
® Conclusions
=
¥ wp
WAFL Meta-Data
® WAFL stores meta-data in files
- Inode file - stores inodes
- Block-map file - stores free blocks
- Inode-map file - identifies free inodes
Fis airds
node Als ?LH: | Y r['.:-:':
woaime [[JewsJesa]
- Bl Ak e i A Corw it Frlool i 1 esa Pl st
[+ Fin
¥ wp

WP
Zoom of WAFL Meta-Data
(Tree of Blocks)
® Root inode must be in fixed location
® Other blocks can be written anywhere
Aoot Inode
Inode File
Indirect blocks
Inode File
Data Blocks
Reqular File
Indirect Blocks
Regulzr Fil
i res
Block Map Inode Map Random Aandom
File File Small File Large File
I L LA} |

TN =

Snapshots (1 of 2)
® Copy root inode only

(a) Batore Snapshat (b} After Snapshat (¢} After Block Update

Root Naw Root Hew Root
Inoda Snapshot Inode Snapshot |node

[<][c] [E]

« Over time, snapshot references more and more data

blocks that are not used

« Rate of file change determines how many snapshots

you want to store WP

S N W

Consistency Points (1 of 2)

® In order to avoid consistency checks after
unclean shutdown, WAFL creates special
snapshot called a consistency point every
few seconds
- Not accessible via NFS

® Batched operations are written each
consistency point

® In between consistency points, data only
written to RAM

WP

Snapshots (2 of 2)

® When disk block modified, must modify
indirect pointers as well

(a) Betare Block Updata (b) After Block Update

Snapshot Root Enapshot Root
Inode Inode Inode Inods

Inode File
Indirect Block

Inoda Flle
Block

Regular File
Indirect Black

Regular File
Data Blosk

TN =

« Batch, to improve 1/0 performance

Consistency Points (2 of 2)

® WAFL use of NVRAM
- NFS requests are logged to NVRAM
® NVRAM has batteries to avoid losing during poweroff
- Upon unclean shutdown, re-apply NFS requests to
last consistency point
- Upon clean shutdown, create consistency point and
turnoff NVRAM
® Note, typical FS uses NVRAM for write cache
- Uses more NVRAM space (WAFL logs are smaller)
® Ex: “rename” needs 32 KB, WAFL needs 150 bytes
® Ex: write 8KB needs 3 blocks (data, inode, indirect
pointer), WAFL needs 1 block (data) plus 120 bytes
for log

- Slower response time than WAFL

R N N e

S N W

Write Allocation

® Write times dominate NFS performance
- Read caches at client are large

- Bx as many write operations as read at
server

® WAFL batches write requests
® WAFL allows write anywhere, enabling
inode next to data
- Typical FS has inode information and free
blocks at fixed location
® WAFL allows writes in any order since uses
consistency points

- Typical FS writes in fixed order to allow
f sck to work WP

WP
Outline
® Introduction (done)
® Snapshots : User Level (done)
® WAFL Implementation (done)
® Snapshots: System Level (next)
® Performance
® Conclusions
-]
A wp

TN =

The Block-Map File
® Typical FS uses bit for each free block, 1 is
allocated and O is free
- Ineffective for WAFL since may be other
snapshots that point to block
® WAFL uses 32 bits for each block

Time Block-Map Entry Description

t1 ooo0o000 Block s unused

t2 00000001 Block Is allocated for active FS
t3 00000011 Snapshot #1 Is created

4 00000111 Snapshot #2 Is created

t5 00000110 Block Is deleted from active FS
t6 00000110 Snapshot #3 Is created

7 00000100 Snapshot #1 Is deleted

t8 00000000 Snapshot #2 Is deleted;

block Is unused

bit 0: set for active flle system

bit 1; set for Snapshot #1

bit 2; set for Snapshot #2

bit 3: set for Snapshat #3 we

S N W

Flushing IN_SNAPSHOT Data

Flush inode data first

- Keeps two caches for inode data, so can copy
system one to inode data file, unblocking most NFS
requests (requires no 170 since inode file flushed
later)

Update block-map file

- Copy active bit to snapshot bit

Write all IN_SNAPSHOT data

- Restart any blocked requests

Duplicate root inode and turn off IN_SNAPSHOT

bit

® All done in less than 1 second, first in 100s of ms

WP

S N W

Performance (1 of 2)

® Compare against NFS systems
® Best is SPEC NFS
- LADDIS: Legato, Auspex, Digital, Data
General, Interphase and Sun
® Measure response times versus throughput
® (Me: System Specifications?!)

WP

TN =

Creating Snapshots

® Could suspend NFS, create snaphost,
resume NFS

- But can take up to 1 second
® Challenge: avoid locking out NFS requests
® WAFL marks all dirty cache data as
IN_SNAPSHOT
- NFS requests can read system data, modify
data not IN_SNAPSHOT
- Data not IN_SNAPSHOT not flushed to
disk
® Must flush IN_SNAPSHOT data as
quickly as possible

WP
Qutline
® Introduction (done)
® Snapshots : User Level (done)
® WAFL Implementation (done)
® Snapshots: System Level (done)
® pPerformance (next)
® Conclusions
]
g wp
Performance (2 of 2)
I 509 = FAServer 8X Cluster
T 4 Auspex NS 6000
g == 5un SPARCcluster 1
E 404 == Sun SPARCenter 2000
@ 351 |=SunSPARCserver 1000
E
@ ¥
E 254
& 204
E 15+
I sq
BE % 50 1000 1500 2000 2500 3000 3500
NFS operations/second
I (Typically, care for knee in curve) WP

TN =

Response Time (Msec/Op)

NFS vs. New File Systems

14
——10 MPFS Clients
12
10 —m—5 MPFS Clients &|
T 5 NFS Clients
s J 10 NFS Clients
64
4 4
ﬁ‘r/'L
24
o T T T T
0 1000 2000 3000 4000

Generated Load (Ops/Sec)

« Remove NFS server as bottleneck

« Clients write directly to device

5000

WP

TN =

Conclusion

NetApp works and is stable

Consistency points simple, reducing bugs in

code

Easier to develop stable code for network

appliance than for general system

- Few NFS client implementations and limited
set of operations so can test thoroughly

WP

